MNIST using LeNet
MNIST Convnet Tutorial
MNIST Dataset
%matplotlib inline
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
# a batch_size of 64, size 1000 for testing
# mean 0.1307, std 0.3081 used for the Normalize()
batch_size_train=64
batch_size_test=64
# transform = transforms.Compose(
# [transforms.ToTensor(),
# transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
transform = transforms.Compose(
[transforms.Resize((32, 32)),transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))])
# Train set
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size_train,
shuffle=True, num_workers=2)
# Test set
testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size_test,
shuffle=True, num_workers=2)Plot some train data

Define the network
Loss Function and Optimization
Train network
Save Model
Test the network on the test data
Visualize test results

Continued Training from Checkpoints
Last updated