📚
DLIP
  • Introduction
  • Prerequisite
  • Image Processing Basics
    • Notes
      • Thresholding
      • Spatial Filtering
      • Masking with Bitwise Operation
      • Model n Calibration
    • Tutorial
      • Tutorial: Install OpenCV C++
      • Tutorial: Create OpenCV Project
      • Tutorial: C++ basics
      • Tutorial: OpenCV Basics
      • Tutorial: Image Watch for Debugging
      • Tutorial: Spatial Filter
      • Tutorial: Thresholding and Morphology
      • Tutorial: Camera Calibration
      • Tutorial: Color Image Processing
      • Tutorial: Edge Line Circle Detection
      • Tutorial: Corner Detection and Optical Flow
      • Tutorial: OpenCV C++ Cheatsheet
      • Tutorial: Installation for Py OpenCV
      • Tutorial: OpenCv (Python) Basics
    • LAB
      • Lab Report Template
      • Lab Report Grading Criteria
      • LAB Report Instruction
      • LAB: Grayscale Image Segmentation
        • LAB: Grayscale Image Segmentation -Gear
        • LAB: Grayscale Image Segmentation - Bolt and Nut
      • LAB: Color Image Segmentation
        • LAB: Facial Temperature Measurement with IR images
        • LAB: Magic Cloak
      • LAB: Straight Lane Detection and Departure Warning
      • LAB: Dimension Measurement with 2D camera
      • LAB: Tension Detection of Rolling Metal Sheet
  • Deep Learning for Perception
    • Notes
      • Lane Detection with Deep Learning
      • Overview of Deep Learning
        • Object Detection
        • Deep Learning Basics: Introduction
        • Deep Learning State of the Art
        • CNN, Object Detection
      • Perceptron
      • Activation Function
      • Optimization
      • Convolution
      • CNN Overview
      • Evaluation Metric
      • LossFunction Regularization
      • Bias vs Variance
      • BottleNeck Unit
      • Object Detection
      • DL Techniques
        • Technical Strategy by A.Ng
    • Tutorial - PyTorch
      • Tutorial: Install PyTorch
      • Tutorial: Python Numpy
      • Tutorial: PyTorch Tutorial List
      • Tutorial: PyTorch Example Code
      • Tutorial: Tensorboard in Pytorch
      • Tutorial: YOLO in PyTorch
        • Tutorial: Yolov8 in PyTorch
        • Tutorial: Train Yolo v8 with custom dataset
          • Tutorial: Train Yolo v5 with custom dataset
        • Tutorial: Yolov5 in Pytorch (VS code)
        • Tutorial: Yolov3 in Keras
    • LAB
      • Assignment: CNN Classification
      • Assignment: Object Detection
      • LAB: CNN Object Detection 1
      • LAB: CNN Object Detection 2
      • LAB Grading Criteria
    • Tutorial- Keras
      • Train Dataset
      • Train custom dataset
      • Test model
      • LeNet-5 Tutorial
      • AlexNet Tutorial
      • VGG Tutorial
      • ResNet Tutorial
    • Resource
      • Online Lecture
      • Programming tutorial
      • Books
      • Hardware
      • Dataset
      • Useful sites
  • Must Read Papers
    • AlexNet
    • VGG
    • ResNet
    • R-CNN, Fast-RCNN, Faster-RCNN
    • YOLOv1-3
    • Inception
    • MobileNet
    • SSD
    • ShuffleNet
    • Recent Methods
  • DLIP Project
    • Report Template
    • DLIP 2021 Projects
      • Digital Door Lock Control with Face Recognition
      • People Counting with YOLOv4 and DeepSORT
      • Eye Blinking Detection Alarm
      • Helmet-Detection Using YOLO-V5
      • Mask Detection using YOLOv5
      • Parking Space Management
      • Vehicle, Pedestrian Detection with IR Image
      • Drum Playing Detection
      • Turtle neck measurement program using OpenPose
    • DLIP 2022 Projects
      • BakeryCashier
      • Virtual Mouse
      • Sudoku Program with Hand gesture
      • Exercise Posture Assistance System
      • People Counting Embedded System
      • Turtle neck measurement program using OpenPose
    • DLIP Past Projects
  • Installation Guide
    • Installation Guide for Pytorch
      • Installation Guide 2021
    • Anaconda
    • CUDA cuDNN
      • CUDA 10.2
    • OpenCV
      • OpenCV Install and Setup
        • OpenCV 3.4.13 with VS2019
        • OpenCV3.4.7 VS2017
        • MacOS OpenCV C++ in XCode
      • Python OpenCV
      • MATLAB-OpenCV
    • Framework
      • Keras
      • TensorFlow
        • Cheat Sheet
        • Tutorial
      • PyTorch
    • IDE
      • Visual Studio Community
      • Google Codelab
      • Visual Studio Code
        • Python with VS Code
        • Notebook with VS Code
        • C++ with VS Code
      • Jupyter Notebook
        • Install
        • How to use
    • Ubuntu
      • Ubuntu 18.04 Installation
      • Ubuntu Installation using Docker in Win10
      • Ubuntu Troubleshooting
    • ROS
  • Programming
    • Python_Numpy
      • Python Tutorial - Tips
      • Python Tutorial - For Loop
      • Python Tutorial - List Tuple, Dic, Set
    • Markdown
      • Example: API documentation
    • Github
      • Create account
      • Tutorial: Github basic
      • Tutorial: Github Desktop
    • Keras
      • Tutorial Keras
      • Cheat Sheet
    • PyTorch
      • Cheat Sheet
      • Autograd in PyTorch
      • Simple ConvNet
      • MNIST using LeNet
      • Train ConvNet using CIFAR10
  • Resources
    • Useful Resources
    • Github
Powered by GitBook
On this page
  • I. Introduction
  • II. Procedure
  • Part 1. Face Segmentation excluding mask
  • Part 2. Temperature Measurement
  • III. Report and Demo Video

Was this helpful?

  1. Image Processing Basics
  2. LAB
  3. LAB: Color Image Segmentation

LAB: Facial Temperature Measurement with IR images

Detect Face Temperature from IR(Infra-Red) images

PreviousLAB: Color Image SegmentationNextLAB: Magic Cloak

Last updated 1 month ago

Was this helpful?

I. Introduction

In this lab, you are required to create a simple program that detects the temperature of a person wearing a mask. You will be given a video of IR images of several people measuring their face temperature. Measure the maximum and average temperature of the face (excluding the mask) and show a warning sign if the average temperature is above 38.0 C.

We will not use any deep learning or any other complex algorithms. Just use simple image processing methods such as :

Ÿ InRange, Morphology, Filtering, findContour

Ÿ Refer to [Tutorial: Color Image Segmentation] for programming tips

Download the source Video file:

II. Procedure

Part 1. Face Segmentation excluding mask

Segmentation using InRange()

Recommendation: use the program code given in [Tutorial:color segemtation]

  • Analyze the color space of the raw image. You can use either RGB or HSV space

  • Apply necessary pre-processing, such as filtering.

  • By using InRange(), segment the area of ROI: exposed skin (face and neck) that are not covered by cloth and mask. You must use inRange of all 3-channels of the color image.

  • Apply post-processing such as morphology to enhance the object segmentation.

  • Use findContours() to detect all the connected objects

  • Select only the proper contour around the face. (Hint: can use the contour area)

  • Then, draw the final contour and a box using drawContours( ), boundingRect(), rectangle( )

  • Need to show example results of each process.

Part 2. Temperature Measurement

Temperature from Intensity data

The intensity value of the image is the temperature data scaled within the pre-defined temperature range. Use the intensity value to estimate the temperature.

  • Analyze the intensity values(grayscale, 0-255) of the given image.

  • The actual temperature for this lab is ranged from 25(I=0) to 40 C (I=255).

  • Estimate the (1) maximum temperature and (2) average tempearture within ONLY the segmented area (Contour Area)

  • For average tempeature, use the data within the Top 5% of the tempeature in Descending order.

    • Hint: cv∷sort( ) in SORT_DESCENDING

  • Show the result as TEXT on the final output image.

    • Hint: cv∷putText( )

  • Your final output should be similar to result of the the Demo_Video.

III. Report and Demo Video

You are required to write a consice lab report and submit the program files and the demo video.

Lab Report:

  • Show what you have done with concise explanations and example results of each necessary process

  • In the appendix, show your source code.

  • Submit in both PDF and original file (*.docx etc)

  • No need to print out. Only the On-Line submission.

Demo Video:

  • Create a demo video with a title page showing the course name, data and your names

  • Submit in Hisnet

Source Code:

  • Zip all the necessary source files.

  • Only the source code files. Do not submit image files, project files etc.

Click here