📚
DLIP
  • Introduction
  • Prerequisite
  • Image Processing Basics
    • Notes
      • Thresholding
      • Spatial Filtering
      • Masking with Bitwise Operation
      • Model n Calibration
    • Tutorial
      • Tutorial: Install OpenCV C++
      • Tutorial: Create OpenCV Project
      • Tutorial: C++ basics
      • Tutorial: OpenCV Basics
      • Tutorial: Image Watch for Debugging
      • Tutorial: Spatial Filter
      • Tutorial: Thresholding and Morphology
      • Tutorial: Camera Calibration
      • Tutorial: Color Image Processing
      • Tutorial: Edge Line Circle Detection
      • Tutorial: Corner Detection and Optical Flow
      • Tutorial: OpenCV C++ Cheatsheet
      • Tutorial: Installation for Py OpenCV
      • Tutorial: OpenCv (Python) Basics
    • LAB
      • Lab Report Template
      • Lab Report Grading Criteria
      • LAB Report Instruction
      • LAB: Grayscale Image Segmentation
        • LAB: Grayscale Image Segmentation -Gear
        • LAB: Grayscale Image Segmentation - Bolt and Nut
      • LAB: Color Image Segmentation
        • LAB: Facial Temperature Measurement with IR images
        • LAB: Magic Cloak
      • LAB: Straight Lane Detection and Departure Warning
      • LAB: Dimension Measurement with 2D camera
      • LAB: Tension Detection of Rolling Metal Sheet
  • Deep Learning for Perception
    • Notes
      • Lane Detection with Deep Learning
      • Overview of Deep Learning
        • Object Detection
        • Deep Learning Basics: Introduction
        • Deep Learning State of the Art
        • CNN, Object Detection
      • Perceptron
      • Activation Function
      • Optimization
      • Convolution
      • CNN Overview
      • Evaluation Metric
      • LossFunction Regularization
      • Bias vs Variance
      • BottleNeck Unit
      • Object Detection
      • DL Techniques
        • Technical Strategy by A.Ng
    • Tutorial - PyTorch
      • Tutorial: Install PyTorch
      • Tutorial: Python Numpy
      • Tutorial: PyTorch Tutorial List
      • Tutorial: PyTorch Example Code
      • Tutorial: Tensorboard in Pytorch
      • Tutorial: YOLO in PyTorch
        • Tutorial: Yolov8 in PyTorch
        • Tutorial: Train Yolo v8 with custom dataset
          • Tutorial: Train Yolo v5 with custom dataset
        • Tutorial: Yolov5 in Pytorch (VS code)
        • Tutorial: Yolov3 in Keras
    • LAB
      • Assignment: CNN Classification
      • Assignment: Object Detection
      • LAB: CNN Object Detection 1
      • LAB: CNN Object Detection 2
      • LAB Grading Criteria
    • Tutorial- Keras
      • Train Dataset
      • Train custom dataset
      • Test model
      • LeNet-5 Tutorial
      • AlexNet Tutorial
      • VGG Tutorial
      • ResNet Tutorial
    • Resource
      • Online Lecture
      • Programming tutorial
      • Books
      • Hardware
      • Dataset
      • Useful sites
  • Must Read Papers
    • AlexNet
    • VGG
    • ResNet
    • R-CNN, Fast-RCNN, Faster-RCNN
    • YOLOv1-3
    • Inception
    • MobileNet
    • SSD
    • ShuffleNet
    • Recent Methods
  • DLIP Project
    • Report Template
    • DLIP 2021 Projects
      • Digital Door Lock Control with Face Recognition
      • People Counting with YOLOv4 and DeepSORT
      • Eye Blinking Detection Alarm
      • Helmet-Detection Using YOLO-V5
      • Mask Detection using YOLOv5
      • Parking Space Management
      • Vehicle, Pedestrian Detection with IR Image
      • Drum Playing Detection
      • Turtle neck measurement program using OpenPose
    • DLIP 2022 Projects
      • BakeryCashier
      • Virtual Mouse
      • Sudoku Program with Hand gesture
      • Exercise Posture Assistance System
      • People Counting Embedded System
      • Turtle neck measurement program using OpenPose
    • DLIP Past Projects
  • Installation Guide
    • Installation Guide for Pytorch
      • Installation Guide 2021
    • Anaconda
    • CUDA cuDNN
      • CUDA 10.2
    • OpenCV
      • OpenCV Install and Setup
        • OpenCV 3.4.13 with VS2019
        • OpenCV3.4.7 VS2017
        • MacOS OpenCV C++ in XCode
      • Python OpenCV
      • MATLAB-OpenCV
    • Framework
      • Keras
      • TensorFlow
        • Cheat Sheet
        • Tutorial
      • PyTorch
    • IDE
      • Visual Studio Community
      • Google Codelab
      • Visual Studio Code
        • Python with VS Code
        • Notebook with VS Code
        • C++ with VS Code
      • Jupyter Notebook
        • Install
        • How to use
    • Ubuntu
      • Ubuntu 18.04 Installation
      • Ubuntu Installation using Docker in Win10
      • Ubuntu Troubleshooting
    • ROS
  • Programming
    • Python_Numpy
      • Python Tutorial - Tips
      • Python Tutorial - For Loop
      • Python Tutorial - List Tuple, Dic, Set
    • Markdown
      • Example: API documentation
    • Github
      • Create account
      • Tutorial: Github basic
      • Tutorial: Github Desktop
    • Keras
      • Tutorial Keras
      • Cheat Sheet
    • PyTorch
      • Cheat Sheet
      • Autograd in PyTorch
      • Simple ConvNet
      • MNIST using LeNet
      • Train ConvNet using CIFAR10
  • Resources
    • Useful Resources
    • Github
Powered by GitBook
On this page
  • Installation Guide 2021
  • description: Installation Guide for Deep Learning 2021
  • Installation Guide
  • Installation Guide for Win10
  • Installation Steps

Was this helpful?

  1. Installation Guide
  2. Installation Guide for Pytorch

Installation Guide 2021

Installation Guide 2021


description: Installation Guide for Deep Learning 2021

Installation Guide

Installation Guide for Win10

This installation guide is for programming a deep learning application using Pytorch or Tensorflow.

Make sure you install the correct software version as instructed.

For DLIP 2021-1 Lecture:

  • Python 3.7, CUDA 10.2, cuDNN 8.0.5

  • PyTorch 1.10.x

  • Anaconda for Python 3.7 or Anaconda of Latest Version


Installation Steps

(updated 2021.4)

1. Install Anaconda

Anaconda : Python and libraries package installer.

2. Install Python & Numpy & OpenCV

Install Python

Python 3.7 (2022-1)

Python is already installed by installing Anaconda. But, we will make a virtual environment for a specific Python version.

  • Open Anaconda Prompt(admin mode)

  • First, update conda

conda update -n base -c defaults conda
  • Then, Create Virtual environment for Python 3.7. Name the $ENV as py37

conda create -n py37 python=3.7

After installation, activate the newly created environment

conda activate py37

Install Numpy, OpenCV, Matplot

conda activate py37

conda install numpy
conda install -c conda-forge matplotlib
conda install -c conda-forge opencv

If installed Numpy is not recognized after installation with conda, then install Numpy using pip

pip install numpy

3. Install IDE (Visual Studio Code)

Also, read about

4. Install GPU library (CUDA, cuDNN)

Skip this if you do not have GPU.

Nvidia GPU driver and Library : To operate the GPU.

  • CUDA — GPU C library. Stands for Compute Unified Device Architecture.

  • cuDNN — DL primitives library based on CUDA. Stands for CUDA Deep Neural Network.

5. Install DL Framework

Framework

  • TensorFlow — DL library, developed by Google.

  • Keras — DL wrapper with interchangeable backends. Can be used with TensorFlow, Theano or CNTK.

  • PyTorch — Dynamic DL library with GPU acceleration.

Install Pytorch

  • With GPU

# CUDA 10.2
conda activate py37
conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=10.2 -c pytorch

Latest PyTorch does not support CUDA 10.2 . please use CUDA-11.3 for Latest version.

  • Without GPU

# CPU Only
conda activate py37
conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cpuonly -c pytorch

Install Tensorflow and Keras

  • Run 'Anaconda Prompt(admin)'

  • Activate virtual environment

  • install tensorflow-gpu 2.3.0 packages

  • install keras

conda create -n py37tf23 python=3.7
conda activate py37tf23 
conda install tensorflow-gpu=2.3.0
conda install keras

6. Installing Other libraries

conda activate py37

conda install -c conda-forge matplotlib
conda install -c conda-forge opencv
conda install -c anaconda scikit-learn
conda install -c anaconda pandas
conda install jupyter
conda install -c anaconda ipykernel
PreviousInstallation Guide for PytorchNextAnaconda

Last updated 3 years ago

Was this helpful?

Follow:

Follow:

Follow

Read more

How to program Python in VS Code
How to program CoLab(Notebook) in VS Code
about PyTorch installation
How to Install VS Code
How to install CUDA and cuDNN
How to install Anaconda