📚
DLIP
  • Introduction
  • Prerequisite
  • Image Processing Basics
    • Notes
      • Thresholding
      • Spatial Filtering
      • Masking with Bitwise Operation
      • Model n Calibration
    • Tutorial
      • Tutorial: Install OpenCV C++
      • Tutorial: Create OpenCV Project
      • Tutorial: C++ basics
      • Tutorial: OpenCV Basics
      • Tutorial: Image Watch for Debugging
      • Tutorial: Spatial Filter
      • Tutorial: Thresholding and Morphology
      • Tutorial: Camera Calibration
      • Tutorial: Color Image Processing
      • Tutorial: Edge Line Circle Detection
      • Tutorial: Corner Detection and Optical Flow
      • Tutorial: OpenCV C++ Cheatsheet
      • Tutorial: Installation for Py OpenCV
      • Tutorial: OpenCv (Python) Basics
    • LAB
      • Lab Report Template
      • Lab Report Grading Criteria
      • LAB Report Instruction
      • LAB: Grayscale Image Segmentation
        • LAB: Grayscale Image Segmentation -Gear
        • LAB: Grayscale Image Segmentation - Bolt and Nut
      • LAB: Color Image Segmentation
        • LAB: Facial Temperature Measurement with IR images
        • LAB: Magic Cloak
      • LAB: Straight Lane Detection and Departure Warning
      • LAB: Dimension Measurement with 2D camera
      • LAB: Tension Detection of Rolling Metal Sheet
  • Deep Learning for Perception
    • Notes
      • Lane Detection with Deep Learning
      • Overview of Deep Learning
        • Object Detection
        • Deep Learning Basics: Introduction
        • Deep Learning State of the Art
        • CNN, Object Detection
      • Perceptron
      • Activation Function
      • Optimization
      • Convolution
      • CNN Overview
      • Evaluation Metric
      • LossFunction Regularization
      • Bias vs Variance
      • BottleNeck Unit
      • Object Detection
      • DL Techniques
        • Technical Strategy by A.Ng
    • Tutorial - PyTorch
      • Tutorial: Install PyTorch
      • Tutorial: Python Numpy
      • Tutorial: PyTorch Tutorial List
      • Tutorial: PyTorch Example Code
      • Tutorial: Tensorboard in Pytorch
      • Tutorial: YOLO in PyTorch
        • Tutorial: Yolov8 in PyTorch
        • Tutorial: Train Yolo v8 with custom dataset
          • Tutorial: Train Yolo v5 with custom dataset
        • Tutorial: Yolov5 in Pytorch (VS code)
        • Tutorial: Yolov3 in Keras
    • LAB
      • Assignment: CNN Classification
      • Assignment: Object Detection
      • LAB: CNN Object Detection 1
      • LAB: CNN Object Detection 2
      • LAB Grading Criteria
    • Tutorial- Keras
      • Train Dataset
      • Train custom dataset
      • Test model
      • LeNet-5 Tutorial
      • AlexNet Tutorial
      • VGG Tutorial
      • ResNet Tutorial
    • Resource
      • Online Lecture
      • Programming tutorial
      • Books
      • Hardware
      • Dataset
      • Useful sites
  • Must Read Papers
    • AlexNet
    • VGG
    • ResNet
    • R-CNN, Fast-RCNN, Faster-RCNN
    • YOLOv1-3
    • Inception
    • MobileNet
    • SSD
    • ShuffleNet
    • Recent Methods
  • DLIP Project
    • Report Template
    • DLIP 2021 Projects
      • Digital Door Lock Control with Face Recognition
      • People Counting with YOLOv4 and DeepSORT
      • Eye Blinking Detection Alarm
      • Helmet-Detection Using YOLO-V5
      • Mask Detection using YOLOv5
      • Parking Space Management
      • Vehicle, Pedestrian Detection with IR Image
      • Drum Playing Detection
      • Turtle neck measurement program using OpenPose
    • DLIP 2022 Projects
      • BakeryCashier
      • Virtual Mouse
      • Sudoku Program with Hand gesture
      • Exercise Posture Assistance System
      • People Counting Embedded System
      • Turtle neck measurement program using OpenPose
    • DLIP Past Projects
  • Installation Guide
    • Installation Guide for Pytorch
      • Installation Guide 2021
    • Anaconda
    • CUDA cuDNN
      • CUDA 10.2
    • OpenCV
      • OpenCV Install and Setup
        • OpenCV 3.4.13 with VS2019
        • OpenCV3.4.7 VS2017
        • MacOS OpenCV C++ in XCode
      • Python OpenCV
      • MATLAB-OpenCV
    • Framework
      • Keras
      • TensorFlow
        • Cheat Sheet
        • Tutorial
      • PyTorch
    • IDE
      • Visual Studio Community
      • Google Codelab
      • Visual Studio Code
        • Python with VS Code
        • Notebook with VS Code
        • C++ with VS Code
      • Jupyter Notebook
        • Install
        • How to use
    • Ubuntu
      • Ubuntu 18.04 Installation
      • Ubuntu Installation using Docker in Win10
      • Ubuntu Troubleshooting
    • ROS
  • Programming
    • Python_Numpy
      • Python Tutorial - Tips
      • Python Tutorial - For Loop
      • Python Tutorial - List Tuple, Dic, Set
    • Markdown
      • Example: API documentation
    • Github
      • Create account
      • Tutorial: Github basic
      • Tutorial: Github Desktop
    • Keras
      • Tutorial Keras
      • Cheat Sheet
    • PyTorch
      • Cheat Sheet
      • Autograd in PyTorch
      • Simple ConvNet
      • MNIST using LeNet
      • Train ConvNet using CIFAR10
  • Resources
    • Useful Resources
    • Github
Powered by GitBook
On this page
  • Installation for Visual Studio Code
  • 1. Install Anaconda
  • 2. Install Python via Anaconda
  • 3. Install Libraries
  • 4. Install Visual Studio Code
  • 5. Setup Configuration in Visual Studio Code
  • EXERCISE
  • Exercise 1
  • Exercise 2

Was this helpful?

  1. Image Processing Basics
  2. Tutorial

Tutorial: Installation for Py OpenCV

PreviousTutorial: OpenCV C++ CheatsheetNextTutorial: OpenCv (Python) Basics

Last updated 1 year ago

Was this helpful?

Installation for Visual Studio Code

(updated 2022.4)

This installation guide is for programming Python OpenCV. Make sure you install the correct software version as instructed.

For DLIP Lectures:

  • Python >3.9

  • Anaconda for Python >3.9

  • OpenCV 4.x

1. Install Anaconda

Anaconda : Python and libraries package installer.

Follow:

2. Install Python via Anaconda

Python 3.9 (2022-1)

Python is already installed by installing Anaconda. But, we will make a virtual environment for a specific Python version.

  • Open Anaconda Prompt(admin mode)

  • First, update conda and pip

conda update -n base -c defaults conda
pip install --upgrade pip
  • Then, Create virtual environment for Python 3.9.

  • Name the $ENV as py39. If you are in base, enter conda activate py39

conda create -n py39 python=3.9.12
  • After installation, activate the newly created environment

conda activate py39

3. Install Libraries

Install Numpy, OpenCV, Matplot, Jupyter

conda activate py39
conda install -c anaconda seaborn jupyter
conda install -c anaconda numpy
conda install -c conda-forge opencv

4. Install Visual Studio Code

5. Setup Configuration in Visual Studio Code


EXERCISE

The image file must be in the same folder as the source file

Create a new source file as TU_OpenCVtest.py

Exercise 1

Run python code and submit the final output image

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt

# a simple numpy test
a = np.array([1,2,3])
print(a*a)

# Load image
img = cv.imread('testImage.jpg')

# Display Image
cv.namedWindow('source', cv.WINDOW_AUTOSIZE) 
cv.imshow('source',img)
cv.waitKey(0)

Exercise 2

Run python code and submit the final output image

import cv2 as cv

# Open the video camera no.0
cap = cv.VideoCapture(0)

# If not success, exit the program
if not cap.isOpened():
    print('Cannot open camera')

cv.namedWindow('MyVideo', cv.WINDOW_AUTOSIZE)

while True:
    # Read a new frame from video
    ret, frame = cap.read()

    # If not success, break loop
    if not ret:
        print('Cannot read frame')
        break

    cv.imshow('MyVideo', frame)

    if cv.waitKey(30) & 0xFF == 27:
        print('Press ESC to stop')
        break

cv.destroyAllWindows()
cap.release()
image
image

Follow:

Follow:

Follow:

First, download the test image file:

How to install Anaconda
Python in VS Code
Jupyter Notebook in VS Code
Click here
How to Install VS Code