Tutorial Keras

Follow the tutorials in the following orders

Keras.io Tutorial

Computer Vision Tutorials: https://keras.io/examples/vision/

  1. Simple MNIST CNN

  2. Image classification from scratch

Pyimagesearch.com Tutorial

Get Started Tutorial

Keras Model Zoo:

Collection of pretrained models: click here

YOLOv3 in Keras

Blog post

Source code by experiencor Huynh Ngoc Anh

Other Tutorials

Exercise

Image Recognition

  1. Use AlexNet on MNIST

  2. Use LeNet to train and recognize vehicles. Use Dataset of

  3. Create your own convnet network for MNIST dataset. Compare the performance with tutorial output

Available models

Model
Size
Top-1 Accuracy
Top-5 Accuracy
Parameters
Depth

88 MB

0.790

0.945

22,910,480

126

528 MB

0.713

0.901

138,357,544

23

549 MB

0.713

0.900

143,667,240

26

98 MB

0.749

0.921

25,636,712

-

171 MB

0.764

0.928

44,707,176

-

232 MB

0.766

0.931

60,419,944

-

98 MB

0.760

0.930

25,613,800

-

171 MB

0.772

0.938

44,675,560

-

232 MB

0.780

0.942

60,380,648

-

92 MB

0.779

0.937

23,851,784

159

215 MB

0.803

0.953

55,873,736

572

16 MB

0.704

0.895

4,253,864

88

14 MB

0.713

0.901

3,538,984

88

33 MB

0.750

0.923

8,062,504

121

57 MB

0.762

0.932

14,307,880

169

80 MB

0.773

0.936

20,242,984

201

23 MB

0.744

0.919

5,326,716

-

343 MB

0.825

0.960

88,949,818

-

29 MB

-

-

5,330,571

-

31 MB

-

-

7,856,239

-

36 MB

-

-

9,177,569

-

48 MB

-

-

12,320,535

-

75 MB

-

-

19,466,823

-

118 MB

-

-

30,562,527

-

166 MB

-

-

43,265,143

-

256 MB

-

-

66,658,687

-

The top-1 and top-5 accuracy refers to the model's performance on the ImageNet validation dataset.

Depth refers to the topological depth of the network. This includes activation layers, batch normalization layers etc.

Last updated