📚
DLIP
  • Introduction
  • Prerequisite
  • Image Processing Basics
    • Notes
      • Thresholding
      • Spatial Filtering
      • Masking with Bitwise Operation
      • Model n Calibration
    • Tutorial
      • Tutorial: Install OpenCV C++
      • Tutorial: Create OpenCV Project
      • Tutorial: C++ basics
      • Tutorial: OpenCV Basics
      • Tutorial: Image Watch for Debugging
      • Tutorial: Spatial Filter
      • Tutorial: Thresholding and Morphology
      • Tutorial: Camera Calibration
      • Tutorial: Color Image Processing
      • Tutorial: Edge Line Circle Detection
      • Tutorial: Corner Detection and Optical Flow
      • Tutorial: OpenCV C++ Cheatsheet
      • Tutorial: Installation for Py OpenCV
      • Tutorial: OpenCv (Python) Basics
    • LAB
      • Lab Report Template
      • Lab Report Grading Criteria
      • LAB Report Instruction
      • LAB: Grayscale Image Segmentation
        • LAB: Grayscale Image Segmentation -Gear
        • LAB: Grayscale Image Segmentation - Bolt and Nut
      • LAB: Color Image Segmentation
        • LAB: Facial Temperature Measurement with IR images
        • LAB: Magic Cloak
      • LAB: Straight Lane Detection and Departure Warning
      • LAB: Dimension Measurement with 2D camera
      • LAB: Tension Detection of Rolling Metal Sheet
  • Deep Learning for Perception
    • Notes
      • Lane Detection with Deep Learning
      • Overview of Deep Learning
        • Object Detection
        • Deep Learning Basics: Introduction
        • Deep Learning State of the Art
        • CNN, Object Detection
      • Perceptron
      • Activation Function
      • Optimization
      • Convolution
      • CNN Overview
      • Evaluation Metric
      • LossFunction Regularization
      • Bias vs Variance
      • BottleNeck Unit
      • Object Detection
      • DL Techniques
        • Technical Strategy by A.Ng
    • Tutorial - PyTorch
      • Tutorial: Install PyTorch
      • Tutorial: Python Numpy
      • Tutorial: PyTorch Tutorial List
      • Tutorial: PyTorch Example Code
      • Tutorial: Tensorboard in Pytorch
      • Tutorial: YOLO in PyTorch
        • Tutorial: Yolov8 in PyTorch
        • Tutorial: Train Yolo v8 with custom dataset
          • Tutorial: Train Yolo v5 with custom dataset
        • Tutorial: Yolov5 in Pytorch (VS code)
        • Tutorial: Yolov3 in Keras
    • LAB
      • Assignment: CNN Classification
      • Assignment: Object Detection
      • LAB: CNN Object Detection 1
      • LAB: CNN Object Detection 2
      • LAB Grading Criteria
    • Tutorial- Keras
      • Train Dataset
      • Train custom dataset
      • Test model
      • LeNet-5 Tutorial
      • AlexNet Tutorial
      • VGG Tutorial
      • ResNet Tutorial
    • Resource
      • Online Lecture
      • Programming tutorial
      • Books
      • Hardware
      • Dataset
      • Useful sites
  • Must Read Papers
    • AlexNet
    • VGG
    • ResNet
    • R-CNN, Fast-RCNN, Faster-RCNN
    • YOLOv1-3
    • Inception
    • MobileNet
    • SSD
    • ShuffleNet
    • Recent Methods
  • DLIP Project
    • Report Template
    • DLIP 2021 Projects
      • Digital Door Lock Control with Face Recognition
      • People Counting with YOLOv4 and DeepSORT
      • Eye Blinking Detection Alarm
      • Helmet-Detection Using YOLO-V5
      • Mask Detection using YOLOv5
      • Parking Space Management
      • Vehicle, Pedestrian Detection with IR Image
      • Drum Playing Detection
      • Turtle neck measurement program using OpenPose
    • DLIP 2022 Projects
      • BakeryCashier
      • Virtual Mouse
      • Sudoku Program with Hand gesture
      • Exercise Posture Assistance System
      • People Counting Embedded System
      • Turtle neck measurement program using OpenPose
    • DLIP Past Projects
  • Installation Guide
    • Installation Guide for Pytorch
      • Installation Guide 2021
    • Anaconda
    • CUDA cuDNN
      • CUDA 10.2
    • OpenCV
      • OpenCV Install and Setup
        • OpenCV 3.4.13 with VS2019
        • OpenCV3.4.7 VS2017
        • MacOS OpenCV C++ in XCode
      • Python OpenCV
      • MATLAB-OpenCV
    • Framework
      • Keras
      • TensorFlow
        • Cheat Sheet
        • Tutorial
      • PyTorch
    • IDE
      • Visual Studio Community
      • Google Codelab
      • Visual Studio Code
        • Python with VS Code
        • Notebook with VS Code
        • C++ with VS Code
      • Jupyter Notebook
        • Install
        • How to use
    • Ubuntu
      • Ubuntu 18.04 Installation
      • Ubuntu Installation using Docker in Win10
      • Ubuntu Troubleshooting
    • ROS
  • Programming
    • Python_Numpy
      • Python Tutorial - Tips
      • Python Tutorial - For Loop
      • Python Tutorial - List Tuple, Dic, Set
    • Markdown
      • Example: API documentation
    • Github
      • Create account
      • Tutorial: Github basic
      • Tutorial: Github Desktop
    • Keras
      • Tutorial Keras
      • Cheat Sheet
    • PyTorch
      • Cheat Sheet
      • Autograd in PyTorch
      • Simple ConvNet
      • MNIST using LeNet
      • Train ConvNet using CIFAR10
  • Resources
    • Useful Resources
    • Github
Powered by GitBook
On this page
  • LAB: CNN Object Detection (Free Topic)
  • I. Introduction
  • Application Examples
  • Guidelines
  • II. Report and Demo Video
  • Report
  • Demo Video

Was this helpful?

  1. Deep Learning for Perception
  2. LAB

LAB: CNN Object Detection 2

PreviousLAB: CNN Object Detection 1NextLAB Grading Criteria

Last updated 2 years ago

Was this helpful?

LAB: CNN Object Detection (Free Topic)

I. Introduction

In this lab, you are required to create a simple application that uses a CNN-based object detection. You are free to choose the application topic of your interest.

Application Examples

Choose a topic relevant to Mechatronics.

YOU MUST NOT choose the same topic of previous labs

  • Defect detection

  • Face recognition

  • Pedestrian/Vehicle/Signpost detection for autonomous driving

  • and more

Guidelines

The whole code should be programmed using OpenCV-Python and Pytorch.

  • DO NOT copy a project from online sites.

  • You can refer to any online material and github repository for assistance and getting ideas with proper reference citation.

  • You can use any pretrained object detection model, such as YOLO v3~v5, etc..

  • You may also train the model using custom datasets

  • You can clone a github repository of the object detection model(e.g. YOLOv5), as long as you cite it in the reference.

If you create a simple hardware for demonstration, you will get extra score. Please ask TA if you need an embedded GPU board or any other hardware materials.

II. Report and Demo Video

This lab will be scored depending on the Contents, Complexity, and Completeness .

You are required to write a concise report and submit the program files and the demo video.

Report

The lab report must be written as a 'Tutorial' format to explain the whole process A to Z in detail. Your report will be posted in the class website and be open to public.

A high score will be given if a reader should be able to follow the report instructions and get the same results.

Use the report template given here: https://ykkim.gitbook.io/dlip/dlip-project/report-template

Requirement

  • Write the report in markdown ‘*.md’ format

  • You need to include concise explanations and codes for each process in the report

  • Create a Repository(Public) in Your Github

    • Repository example: DLIP_Project_keywords_2022

    • e.g. DLIP_Project_MaskDetection_2022

  • Upload the source code and report in your github repository

  • Then, download your repository as zip file and submit the zip file to online.handong.edu. The Zip file includes

    • Report (*.md)

    • Report (*.pdf)

    • src (source code)

    • images (sample, test image files )

    • data (whole dataset or download link)

Demo Video

You must create a demo video (~40 sec) that will be uploaded in the Lecture's Youtube channel.

  • The demo video must contain

    • Title page: course name (DLIP2022-1 by Y.-K.Kim), your name, your project tile, date

    • Introduction, Dataset, Model, Results, Conclusion

  • Embed the youtube video in your report

  • Submit the video file to LMS or TA's email

Also, see example tutorials: ,

Refer to past lab reports on object detection
Kaggle Data Challenge
People/vehicle Counting
Anomaly detection
example 1
example 2