% function [x, yE] = odeEU_student(ODE,a,b,h,y0)
% Variable Initialization
N = (b-a)/h;
yE=zeros(1,N+1);
t=zeros(1,N+1);
% Initial Condition
yE(1) = y0;
t(1)=a;
% Euler Explicit ODE Method
for i = 1:N
% Calculate: t(i+1)=_________
% [TO-DO] your code goes here
% Estimate: yE(i+1)=________
% [TO-DO] your code goes here
end
% end % End of Function
Exercise 1: Euler's Explicit Method for 2nd-order ODE
sys2EU_student.m
First, fill-in this blank and complete the algorithm
% function [t, yE, vE] = sys2EU_student(gradF,a,b,h,yINI, vINI)
% Variable Initialization
N = (b-a)/h;
t=zeros(1,N+1);
yE=zeros(1,N+1);
vE=zeros(1,N+1);
% Initial Condition
yE(1) = yINI;
vE(1) = vINI;
t(1)=a;
% Euler Explicit ODE Method
for i = 1:N
t(i+1) = t(i) + h;
dYdt=gradFunc_mck(t(i),[yE(i),vE(i)]);
% Estimate: yE(i+1)=________
% [TO-DO] your code goes here
% Estimate: vE(i+1)=________
% [TO-DO] your code goes here
end
% end % End of Function
Then, create the function file as sys2EU_student.m
[t, yE, vE] = sys2EU_student(@gradFunc_mck,a,b,h,yINI, vINI);
Exercise 2: 2nd order Runge-Kutta for 2nd-order ODE