Tutorial - Sine Taylor
Tutorial - Programming sin(x) (In Class Activity)
Preparation
1) PPT Download: Download Supplementary PPT
2) You must follow the Tutorial: Tutorial: NP Library Header Files
3) You must do: Assignment 0
Problem 1
Introduction
a) Create sinTaylor(x) that returns the output of sine x, where x is in [rad].
b) Create sindTaylor(x) that returns the output of sine x, where x in in [deg].
Procedure
Create a new empty project in Visual Studio Community
Name the project as:
TU_TaylorSeries
It should be saved under
\tutorialdirectoryi.e.:
C:\Users\yourID\source\repos\NP\tutorial\TU_TaylorSeries
Create a new C/C++ source file for main()
Name the source file as
TU_taylorSeries_exercise.cpp
Copy the source code from
Fill in the definition of sinTaylor(rad) in the main source.
Compare your answer and calculate the absolute error
sin(π/3)= 0.86602540378
Create sindTaylor(deg) for degree unit input and output.
Hint: re-use sinTaylor(rad) definition
TIP
Approximation of Sine with Taylor series

Pseudocode for Programming Sine with Taylor series

Pseudocode for Programming power()

Video for Problem 1
See here for the TA Tutorial Video
Problem 2
Introduction
Define your sinTaylor(x) in the NP library header file
Procedure
Create a new empty project in Visual Studio Community
Name the project as:
TU_TaylorSeries_Part2
It should be saved under
\tutorialdirectoryi.e.:
C:\Users\yourID\source\repos\NP\tutorial\TU_TaylorSeries_Part2
Create a new C/C++ source file for main()
Name the source file as
TU_taylorSeries_exercise_part2.cpp
Copy the source code
(Library File Preparation)
Under the directory of
\include, prepare header filesFiles:
myNP_tutorial.cppandmyNP_tutorial.h.C:\Users\yourID\source\repos\NP\includeThis is the same header file as in Tutorial: NP Library Header Files Step 3. Create library header files
These files should be saved in “ \include\” folder.

(Library File Update)
Update the header files
Your sinTaylor(rad) of Problem 1 should be declared and defined in the header file.
See below as example
Run and check the answer
Video for Problem 2
See here for the TA Tutorial Video
Exercise
Create
double cosTaylor(double rad)Create
double expTaylor(double x)
After you have completed all the exercises, you can check sample solutions here
Last updated