๐Ÿ–๏ธ
gitbook_docs
  • Introduction
  • Machine Learning
    • Recommended Courses
      • For Undergrad Research
      • Math for Machine Learning
    • ML Notes
      • Covariance Correlation
      • Feature Selection
      • Linear Regression
      • Entropy, Cross-Entropy, KL Divergence
      • Bayesian Classifier
        • Terminology Review
        • Bayesian Classifier for Normally Distributed classes
      • Linear Discriminant Analysis
      • Logistic Regression
        • Logistic Regression Math
      • Logistic Regression-MaximumLikelihood
      • SVM
        • SVM concept
        • SVM math
      • Cross Validation
      • Parameter, Density Estimation
        • MAP, MLE
        • Gaussian Mixture Model
      • E-M
      • Density Estimation(non-parametric)
      • Unsupervised Learning
      • Clustering
      • kNN
      • WaveletTransform
      • Decision Tree
    • Probability and Statistics for Machine Learning
      • Introduction
      • Basics of Data Analysis
      • Probability for Discrete Random Variable
      • Poisson Distribution
      • Chi-Square Distribution
      • P-value and Statistical Hypothesis
      • Power and Sample Size
      • Hypothesis Test Old
      • Hypothesis Test
      • Multi Armed Bandit
      • Bayesian Inference
      • Bayesian Updating with Continuous Priors
      • Discrete Distribution
      • Comparison of Bayesian and frequentist inference
      • Confidence Intervals for Normal Data
      • Frequenist Methods
      • Null Hypothesis Significance Testing
      • Confidence Intervals: Three Views
      • Confidence Intervals for the Mean of Non-normal Data
      • Probabilistic Prediction
  • Industrial AI
    • PHM Dataset
    • BearingFault_Journal
      • Support Vector Machine based
      • Autoregressive(AR) model based
      • Envelope Extraction based
      • Wavelet Decomposition based
      • Prediction of RUL with Deep Convolution Nueral Network
      • Prediction of RUL with Information Entropy
      • Feature Model and Feature Selection
    • TempCore Journal
      • Machine learning of mechanical properties of steels
      • Online prediction of mechanical properties of hot rolled steel plate using machine learning
      • Prediction and Analysis of Tensile Properties of Austenitic Stainless Steel Using Artificial Neural
      • Tempcore, new process for the production of high quality reinforcing
      • TEMPCORE, the most convenient process to produce low cost high strength rebars from 8 to 75 mm
      • Experimental investigation and simulation of structure and tensile properties of Tempcore treated re
    • Notes
  • LiDAR
    • Processing of Point Cloud
    • Intro. 3D Object Detection
    • PointNet
    • PointNet++
    • Frustrum-PointNet
    • VoxelNet
    • Point RCNN
    • PointPillars
    • LaserNet
  • Simulator
    • Simulator List
    • CARLA
    • Airsim
      • Setup
      • Tutorial
        • T#1
        • T#2
        • T#3: Opencv CPP
        • T#4: Opencv Py
        • Untitled
        • T#5: End2End Driving
  • Resources
    • Useful Resources
    • Github
    • Jekyll
  • Reinforcement Learning
    • RL Overview
      • RL Bootcamp
      • MIT Deep RL
    • Textbook
    • Basics
    • Continuous Space RL
  • Unsupervised Learning
    • Introduction
  • Unclassified
    • Ethics
    • Conference Guideline
  • FPGA
    • Untitled
  • Numerical Method
    • NM API reference
Powered by GitBook
On this page
  • Probabilistic Prediction
  • Words of estimation probability (WEP)
  • Odds
  • Bayes factors

Was this helpful?

  1. Machine Learning
  2. Probability and Statistics for Machine Learning

Probabilistic Prediction

Probabilistic Prediction

  • ๋ฏธ๋ž˜์— ์ผ์–ด๋‚  ์ผ์— ํ™•๋ฅ ์„ ์„ค์ •ํ•œ prediction, probabilistic forecasting์ด๋ผ๊ณ ๋„ ํ•จ

  • Example) prediction์ด "๋‚ด์ผ ๋น„๊ฐ€ ์˜จ๋‹ค"๋ผ๊ณ  ํ•œ๋‹ค๋ฉด probabilistic prediction์€ "๋‚ด์ผ ๋น„๊ฐ€ ์˜ฌ ํ™•๋ฅ ์ด 60%์ด๋‹ค"๋ผ๊ณ  ๋งํ•˜๋Š” ๊ฒƒ

Words of estimation probability (WEP)

  • WEP prediction: "๋‚ด์ผ ๋น„๊ฐ€ ์˜ฌ ๊ฒƒ ๊ฐ™๋‹ค"์ฒ˜๋Ÿผ ๋ถˆํ™•์‹ค์„ฑ์ด ๋‚ดํฌ๋œ ํ‘œํ˜„

  • WEP๋Š” ์ˆ˜์น˜๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ๊ธฐ์ค€์ด ์—†์Œ

Odds

  • ์‚ฌ๊ฑด์˜ odds๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •์˜๋จ

O(E)=P(E)P(Ec)O(E) = {{P(E)} \over {P(E^c )}}O(E)=P(Ec)P(E)โ€‹
  • ๋ณดํ†ต E์™€ not E๋ฅผ ๋น„๊ตํ•จ

  • A์™€ B๋ฅผ ๋น„๊ตํ•  ์ˆ˜๋„ ์žˆ์Œ( = P(A) / P(B) )

  • Bayesian ๊ด€์ ์˜ odds: ์ฃผ์–ด์ง„ ๋ฐ์ดํ„ฐ D์— ๋Œ€ํ•œ hypothesis H์˜ odds

Bayes factors

\eqalign{ & O(M|F) = {{P(F|M)} \over {P(F|M^c )}} \cdot {{P(M)} \over {P(M^c )}} \cr & = {{P(F|M)} \over {P(F|M^c )}} \cdot O(M) \cr}

P(M) = Marfan disease์— ๊ฑธ๋ ธ์„ ํ™•๋ฅ 

P(F) = ์ฆ์ƒ(features)์ด ๋‚˜ํƒ€๋‚  ํ™•๋ฅ 

  • posterior odds = Bayes factor * prior odds

  • Bayes factor๋ž€ likelihood์˜ ๋น„์œจ์„ ์˜๋ฏธํ•จ

  • Bayes factor๋Š” ๋ฐ์ดํ„ฐ์— ์˜ํ•ด ์ œ๊ณต๋œ 'evidence'์˜ ๊ฐ•๋„๋ฅผ ๋‚˜ํƒ€๋ƒ„

  • Bayes factor๊ฐ€ ํฌ๋”๋ผ๋„ prior odds๊ฐ€ ์ž‘์œผ๋ฉด odds๊ฐ€ ์ž‘์„ ์ˆ˜๋„ ์žˆ์Œ

Example) ์ „์ฒด ์ธ๊ตฌ์˜ 0.005์˜ ํ™•๋ฅ ๋กœ ์งˆ๋ณ‘์ด ๋ฐœ๋ณ‘ํ•œ๋‹ค. ์„ ๋ณ„ ๊ฒ€์‚ฌ ๊ฒฐ๊ณผ false positive๋Š” 0.05, false negative๋Š” 0.02์ด๋‹ค.

  1. ์งˆ๋ณ‘์˜ prior odds๋Š”?

\eqalign{ & Let\,H_ + = 'has\,disease'\,and\,H_ - = 'doesn't' \cr & Let\,T_ + = positive\,test \cr & O(H_ + ) = {{P(H_ + )} \over {P(H_ - )}} = {{0.005} \over {0.995}} = 0.00503 \cr}

likelihood table:

  1. ์ด ๋ฐ์ดํ„ฐ์—์„œ Bayes factor๋Š”?

    Bayes factor = ratio of likelihoods

    =P(T+โˆฃH+)P(T+โˆฃHโˆ’)=0.980.05=19.6= {{P(T_ + |H_ + )} \over {P(T_ + |H_ - )}} = {{0.98} \over {0.05}} = 19.6=P(T+โ€‹โˆฃHโˆ’โ€‹)P(T+โ€‹โˆฃH+โ€‹)โ€‹=0.050.98โ€‹=19.6
  2. posterior odds๋Š”?

    = Bayes factor * prior odds = 19.6 * 0.00504 = 0.00985

  3. 1๊ณผ 2์˜ ๋‹ต๋ณ€์— ๊ทผ๊ฑฐํ•˜์—ฌ positive test(ํ•ด๋‹น ๊ฒ€์‚ฌ)๊ฐ€ ์ œ๊ณตํ•˜๋Š” evidence๊ฐ€ ๊ฐ•ํ•œ์ง€ ์•ฝํ•œ์ง€ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ์Œ?

    ๊ตฌ๋ถ„ ๊ฐ€๋Šฅํ•จ. bayes factor๊ฐ€ 19.6์œผ๋กœ ํ™˜์ž๊ฐ€ ๋ณ‘์— ๊ฑธ๋ ธ๋Š”์ง€์— ๋Œ€ํ•œ ๊ฐ•ํ•œ

    evidence๋ฅผ ๋‚˜ํƒ€๋ƒ„. ์•„๋ž˜์™€ ๊ฐ™์ด bayesian update table๋กœ๋„ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ์Œ

PreviousConfidence Intervals for the Mean of Non-normal DataNextPHM Dataset

Last updated 3 years ago

Was this helpful?