🖍️
gitbook_docs
  • Introduction
  • Machine Learning
    • Recommended Courses
      • For Undergrad Research
      • Math for Machine Learning
    • ML Notes
      • Covariance Correlation
      • Feature Selection
      • Linear Regression
      • Entropy, Cross-Entropy, KL Divergence
      • Bayesian Classifier
        • Terminology Review
        • Bayesian Classifier for Normally Distributed classes
      • Linear Discriminant Analysis
      • Logistic Regression
        • Logistic Regression Math
      • Logistic Regression-MaximumLikelihood
      • SVM
        • SVM concept
        • SVM math
      • Cross Validation
      • Parameter, Density Estimation
        • MAP, MLE
        • Gaussian Mixture Model
      • E-M
      • Density Estimation(non-parametric)
      • Unsupervised Learning
      • Clustering
      • kNN
      • WaveletTransform
      • Decision Tree
    • Probability and Statistics for Machine Learning
      • Introduction
      • Basics of Data Analysis
      • Probability for Discrete Random Variable
      • Poisson Distribution
      • Chi-Square Distribution
      • P-value and Statistical Hypothesis
      • Power and Sample Size
      • Hypothesis Test Old
      • Hypothesis Test
      • Multi Armed Bandit
      • Bayesian Inference
      • Bayesian Updating with Continuous Priors
      • Discrete Distribution
      • Comparison of Bayesian and frequentist inference
      • Confidence Intervals for Normal Data
      • Frequenist Methods
      • Null Hypothesis Significance Testing
      • Confidence Intervals: Three Views
      • Confidence Intervals for the Mean of Non-normal Data
      • Probabilistic Prediction
  • Industrial AI
    • PHM Dataset
    • BearingFault_Journal
      • Support Vector Machine based
      • Autoregressive(AR) model based
      • Envelope Extraction based
      • Wavelet Decomposition based
      • Prediction of RUL with Deep Convolution Nueral Network
      • Prediction of RUL with Information Entropy
      • Feature Model and Feature Selection
    • TempCore Journal
      • Machine learning of mechanical properties of steels
      • Online prediction of mechanical properties of hot rolled steel plate using machine learning
      • Prediction and Analysis of Tensile Properties of Austenitic Stainless Steel Using Artificial Neural
      • Tempcore, new process for the production of high quality reinforcing
      • TEMPCORE, the most convenient process to produce low cost high strength rebars from 8 to 75 mm
      • Experimental investigation and simulation of structure and tensile properties of Tempcore treated re
    • Notes
  • LiDAR
    • Processing of Point Cloud
    • Intro. 3D Object Detection
    • PointNet
    • PointNet++
    • Frustrum-PointNet
    • VoxelNet
    • Point RCNN
    • PointPillars
    • LaserNet
  • Simulator
    • Simulator List
    • CARLA
    • Airsim
      • Setup
      • Tutorial
        • T#1
        • T#2
        • T#3: Opencv CPP
        • T#4: Opencv Py
        • Untitled
        • T#5: End2End Driving
  • Resources
    • Useful Resources
    • Github
    • Jekyll
  • Reinforcement Learning
    • RL Overview
      • RL Bootcamp
      • MIT Deep RL
    • Textbook
    • Basics
    • Continuous Space RL
  • Unsupervised Learning
    • Introduction
  • Unclassified
    • Ethics
    • Conference Guideline
  • FPGA
    • Untitled
  • Numerical Method
    • NM API reference
Powered by GitBook
On this page
  • 1. Introduction
  • 2. Data source
  • 3. Result and discussion
  • 3.1 ML models with all features
  • 3.2 Feature selection
  • 3.3 Mathematical expressions
  • 3.4 ML model based on atomic features
  • 3.5 Development of anti-fatigue high-strength steel
  • 4. Conclusion

Was this helpful?

  1. Industrial AI
  2. TempCore Journal

Machine learning of mechanical properties of steels

PreviousTempCore JournalNextOnline prediction of mechanical properties of hot rolled steel plate using machine learning

Last updated 3 years ago

Was this helpful?

2020, Jie et. al., SCIENCE CHINA Technological Sciences

1. Introduction

본 논문은 5가지 ML 알고리즘(특히 랜덤 포레스트 및 Symbolic regression)을 사용해 steel의 4가지 기계적 특성을 예측

2. Data source

  • 일본 재료과학연구소(NIMS)에서 공개한 철강 데이터셋 사용

    • 세계 최대의 실험 데이터셋 중 하나임

  • fatigue strength, tensile strength, fracture strength, hardness, room temperature, chemical composition, proceeding condition 등의 정보 포함

  • 피로강도에 대한 얘기

  • heating rate and cooling rate는 사용할 수 없었음

  • 열처리 온도 3가지 포함: Normalizing(불림), Quenching, Tempering

  • 열처리 시간 불포함

  • 불림 처리, 퀜칭, 템퍼링 처리가 없는 데이터를 제외하여 360개의 데이터로 줄어듦

3. Result and discussion

3.1 ML models with all features

  • 4개의 ML 알고리즘 사용: RF, LLS(linear least-square), kNN, ANN

  • 16개의 feature 사용

  • 10-fold cross-validation

  • 성능 측정: R(correlation coefficient), RRMSE 사용

\eqalign{ & R = {{\left| {\sum\nolimits_{i = 1}^n {\left( {{y_i} - \bar y} \right)\left( {{{\hat y}_i} - \bar y} \right)} } \right|} \over {\sqrt {\sum\nolimits_{i = 1}^n {{{\left( {{y_i} - \bar y} \right)}^2}} \sum\nolimits_{i = 1}^n {{{\left( {{{\hat y}_i} - \bar y} \right)}^2}} } }} \cr & RRMSE = \sqrt {{1 \over n}\sum\limits_{i = 1}^n {{{\left( {{{{y_i} - {{\hat y}_i}} \over {{y_i}}}} \right)}^2}} } \cr}
  • RF는 fracture strength에 대해 가장 좋은 예측

  • ANN은 fatigue strength, tensile strength에 대해 가장 좋은 예측

3.2 Feature selection

  • RFI: RF에 의해 계산된 importance of feature

    • Mo, Cr, NT, TT가 가장 중요한 feature

  • SRI: SR에 의해 계산된 importance of feature

    • TT, C, Cr, Mo가 가장 중요한 요소

  • RFI, SRI로 선택한 feature들로 ML 알고리즘 적용

    • SRI subset으로 RF 진행한 결과가 가장 성능이 좋았음

3.3 Mathematical expressions

  • SR(Symbolic Regression)이란

    • mathematical expression을 찾는 회귀 방법

  • SR의 결과

    • 높은 예측력을 보임

    • (3)~(6)에 따른면 템퍼링 온도가 낮을 수록 TS와 Hardness가 향상됨

3.4 ML model based on atomic features

  • 예측 성능을 일반화하기 위해 atomic feature를 사용

    • iron은 steel의 matrix임

    • steel의 합금원소는 iron matrix(용매) 내에서 '용질'로 작용해 합금원소와 화합물을 형성하거나 작은 cluster로 침전될 수 있음

    • r_i = 원소 i의 원자 반경

    • x_i = 원소 x의 pauling electroengativity

    • a_i는 다음과 같이 표현 가능

    \eqalign{ & {a_i} = {{{x_i}/{M_i}} \over {\sum\nolimits_i {\left( {{x_i}/{M_i}} \right)} }} \cr & where\,{M_i} = atomic\,weight\,of\,element\,i \cr}
  • RF와 SR로 atomic feature 선택

    • RFI로 선택한 feature

      tVEC, dVEC-Fe, dVEC-C and TT for fatigue strength and hardness

      tVEC, aFe, dVEC-C and TT for tensile strength and fracture strength

    • SRI로 선택한 feature

      dVEC-C, dr-Fe, aFe and TT for all four mechanical properties

    • RF 및 SR로 선택된 feature를 RFI-AF, SRI-AF로 명명

  • SRI, RFI로 선택한 feature의 RF 모델 예측 결과

    • All-AF가 SRI-AF와 유사한 성능

  • SRI, RFI로 선택한 feature의 SR 결과

    • 합금 원소가 강의 강도를 향상시킴

    • 예측 결과

3.5 Development of anti-fatigue high-strength steel

  • eqs 3-6, 7-10으로 예측한 결과와 조금 차이남

4. Conclusion

위 내용 요약