Machine learning of mechanical properties of steels

2020, Jie et. al., SCIENCE CHINA Technological Sciences

1. Introduction

๋ณธ ๋…ผ๋ฌธ์€ 5๊ฐ€์ง€ ML ์•Œ๊ณ ๋ฆฌ์ฆ˜(ํŠนํžˆ ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ ๋ฐ Symbolic regression)์„ ์‚ฌ์šฉํ•ด steel์˜ 4๊ฐ€์ง€ ๊ธฐ๊ณ„์  ํŠน์„ฑ์„ ์˜ˆ์ธก

2. Data source

  • ์ผ๋ณธ ์žฌ๋ฃŒ๊ณผํ•™์—ฐ๊ตฌ์†Œ(NIMS)์—์„œ ๊ณต๊ฐœํ•œ ์ฒ ๊ฐ• ๋ฐ์ดํ„ฐ์…‹ ์‚ฌ์šฉ

    • ์„ธ๊ณ„ ์ตœ๋Œ€์˜ ์‹คํ—˜ ๋ฐ์ดํ„ฐ์…‹ ์ค‘ ํ•˜๋‚˜์ž„

  • fatigue strength, tensile strength, fracture strength, hardness, room temperature, chemical composition, proceeding condition ๋“ฑ์˜ ์ •๋ณด ํฌํ•จ

  • ํ”ผ๋กœ๊ฐ•๋„์— ๋Œ€ํ•œ ์–˜๊ธฐ

  • heating rate and cooling rate๋Š” ์‚ฌ์šฉํ•  ์ˆ˜ ์—†์—ˆ์Œ

  • ์—ด์ฒ˜๋ฆฌ ์˜จ๋„ 3๊ฐ€์ง€ ํฌํ•จ: Normalizing(๋ถˆ๋ฆผ), Quenching, Tempering

  • ์—ด์ฒ˜๋ฆฌ ์‹œ๊ฐ„ ๋ถˆํฌํ•จ

  • ๋ถˆ๋ฆผ ์ฒ˜๋ฆฌ, ํ€œ์นญ, ํ…œํผ๋ง ์ฒ˜๋ฆฌ๊ฐ€ ์—†๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์ œ์™ธํ•˜์—ฌ 360๊ฐœ์˜ ๋ฐ์ดํ„ฐ๋กœ ์ค„์–ด๋“ฆ

3. Result and discussion

3.1 ML models with all features

  • 4๊ฐœ์˜ ML ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์‚ฌ์šฉ: RF, LLS(linear least-square), kNN, ANN

  • 16๊ฐœ์˜ feature ์‚ฌ์šฉ

  • 10-fold cross-validation

  • ์„ฑ๋Šฅ ์ธก์ •: R(correlation coefficient), RRMSE ์‚ฌ์šฉ

  • RF๋Š” fracture strength์— ๋Œ€ํ•ด ๊ฐ€์žฅ ์ข‹์€ ์˜ˆ์ธก

  • ANN์€ fatigue strength, tensile strength์— ๋Œ€ํ•ด ๊ฐ€์žฅ ์ข‹์€ ์˜ˆ์ธก

3.2 Feature selection

  • RFI: RF์— ์˜ํ•ด ๊ณ„์‚ฐ๋œ importance of feature

    • Mo, Cr, NT, TT๊ฐ€ ๊ฐ€์žฅ ์ค‘์š”ํ•œ feature

  • SRI: SR์— ์˜ํ•ด ๊ณ„์‚ฐ๋œ importance of feature

    • TT, C, Cr, Mo๊ฐ€ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ์š”์†Œ

  • RFI, SRI๋กœ ์„ ํƒํ•œ feature๋“ค๋กœ ML ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ ์šฉ

    • SRI subset์œผ๋กœ RF ์ง„ํ–‰ํ•œ ๊ฒฐ๊ณผ๊ฐ€ ๊ฐ€์žฅ ์„ฑ๋Šฅ์ด ์ข‹์•˜์Œ

3.3 Mathematical expressions

  • SR(Symbolic Regression)์ด๋ž€

    • mathematical expression์„ ์ฐพ๋Š” ํšŒ๊ท€ ๋ฐฉ๋ฒ•

  • SR์˜ ๊ฒฐ๊ณผ

    • ๋†’์€ ์˜ˆ์ธก๋ ฅ์„ ๋ณด์ž„

    • (3)~(6)์— ๋”ฐ๋ฅธ๋ฉด ํ…œํผ๋ง ์˜จ๋„๊ฐ€ ๋‚ฎ์„ ์ˆ˜๋ก TS์™€ Hardness๊ฐ€ ํ–ฅ์ƒ๋จ

3.4 ML model based on atomic features

  • ์˜ˆ์ธก ์„ฑ๋Šฅ์„ ์ผ๋ฐ˜ํ™”ํ•˜๊ธฐ ์œ„ํ•ด atomic feature๋ฅผ ์‚ฌ์šฉ

    • iron์€ steel์˜ matrix์ž„

    • steel์˜ ํ•ฉ๊ธˆ์›์†Œ๋Š” iron matrix(์šฉ๋งค) ๋‚ด์—์„œ '์šฉ์งˆ'๋กœ ์ž‘์šฉํ•ด ํ•ฉ๊ธˆ์›์†Œ์™€ ํ™”ํ•ฉ๋ฌผ์„ ํ˜•์„ฑํ•˜๊ฑฐ๋‚˜ ์ž‘์€ cluster๋กœ ์นจ์ „๋  ์ˆ˜ ์žˆ์Œ

    • r_i = ์›์†Œ i์˜ ์›์ž ๋ฐ˜๊ฒฝ

    • x_i = ์›์†Œ x์˜ pauling electroengativity

    • a_i๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ํ‘œํ˜„ ๊ฐ€๋Šฅ

  • RF์™€ SR๋กœ atomic feature ์„ ํƒ

    • RFI๋กœ ์„ ํƒํ•œ feature

      tVEC, dVEC-Fe, dVEC-C and TT for fatigue strength and hardness

      tVEC, aFe, dVEC-C and TT for tensile strength and fracture strength

    • SRI๋กœ ์„ ํƒํ•œ feature

      dVEC-C, dr-Fe, aFe and TT for all four mechanical properties

    • RF ๋ฐ SR๋กœ ์„ ํƒ๋œ feature๋ฅผ RFI-AF, SRI-AF๋กœ ๋ช…๋ช…

  • SRI, RFI๋กœ ์„ ํƒํ•œ feature์˜ RF ๋ชจ๋ธ ์˜ˆ์ธก ๊ฒฐ๊ณผ

    • All-AF๊ฐ€ SRI-AF์™€ ์œ ์‚ฌํ•œ ์„ฑ๋Šฅ

  • SRI, RFI๋กœ ์„ ํƒํ•œ feature์˜ SR ๊ฒฐ๊ณผ

    • ํ•ฉ๊ธˆ ์›์†Œ๊ฐ€ ๊ฐ•์˜ ๊ฐ•๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ด

    • ์˜ˆ์ธก ๊ฒฐ๊ณผ

3.5 Development of anti-fatigue high-strength steel

  • eqs 3-6, 7-10์œผ๋กœ ์˜ˆ์ธกํ•œ ๊ฒฐ๊ณผ์™€ ์กฐ๊ธˆ ์ฐจ์ด๋‚จ

4. Conclusion

์œ„ ๋‚ด์šฉ ์š”์•ฝ

Last updated

Was this helpful?