Math for Machine Learning

Statistics Roadmap

1. STATS BASICS

  • Types of Data: Nominal, Ordinal, Discrete, Continuous

  • Descriptive vs Inferential Stats

  • Moments

  • Mean, Median, Mode

  • Skewness

  • Kurtosis

  • Range, IQR

  • Percentiles, Quartiles

  • Mean Deviation

  • Standard Deviation

  • Variance

  • Quartile Deviation

  • Standard Error

2. CHARTS

  • Frequency Distribution Table

  • Line Chart

  • Bar Chart

  • Histogram

  • Frequency Polygon

  • Pie Chart

  • Ogives

3. PROBABILITY DISTRIBUTION FUNCTIONS

  • Random Variables

  • Multivariate random variables

  • Discrete random variables

  • Continuous random variables

  • Law of Large Numbers

  • Expectation

  • PMF — Probability Mass Function

  • PDF — Probability Density Function

  • CDF — Cumulative Density Function

  • Bernoulli Distribution

  • Binomial Distribution

  • Geometric Distribution

  • Poisson Distribution

  • Exponential Distribution

  • Uniform Distribution

  • Gaussian / Normal Distribution

  • Chi-Square Distribution

  • Power Law Distribution

  • Pareto Distribution

  • Box-Cox Transformation

  • Log-Normal Distribution

  • Kernel Density Estimation

  • Q-Q plot

4. PROBABILITY

  • Basic Probability

  • Joint Probability

  • Conditional Probability

  • Independent Events

  • Mutually Exclusive Events

  • Bayes’ Theorem

5. TESTS / SAMPLING / POPULATION

  • Sampling, Sample Mean & Distribution

  • Central Limit Theorem

  • Point estimate, Interval estimate

  • Confidence Interval

  • Population, Population Mean & Distribution

  • Hypothesis Testing

  • P-value

  • Population Proportions

  • Critical Value

  • Significance Level

  • Rejection regions

  • Type I vs Type II errors

  • One tail vs Two tail

  • Z-Test

  • T-Test

  • ANOVA

  • F-Test

  • Chi-Square Test

  • Monte Carlo Simulation

  • A/B Testing

6. RELATIONS / REGRESSION

  • Causality

  • Covariance

  • Covariance Matrix

  • Correlation

  • Scatter Plots

  • Pearson Correlation Coefficient

  • Rank / Spearman Correlation Coefficient

  • R2 score

  • Linear Regression

  • OLS

  • Factor Analysis

  • Logistic Regression

Linear Algebra Roadmap

1. LINEAR EQUATIONS

  • Systems of Linear Equations

  • Gaussian Elimination

  • Echelon Form

  • Linear Combination

  • Span

  • Homogeneous Linear System

  • Linear Independence

  • Subspace

  • Basis

  • Affine space

  • Linear Transformation

2. MATRIX

  • Matrix transformations

  • Matrix multiplication

  • Inverse Matrix

  • Transpose of a matrix

  • Rank of a matrix

  • Symmetric Matrix

  • Orthogonal Matrix

  • Adjoint Matrix

  • Singular Matrix

  • Determinant of a matrix

  • Trace of a Matrix

3. VECTORS

  • Components of Vector

  • Vector Space

  • Norm of a vector

  • Lengths and distances

  • Euclidean Norm

  • Manhattan Norm

  • Minkowski Distance

  • Scalar Multiplication

  • Dot Product

  • Inner Product

  • Cross Product

  • Orthogonality

  • Orthonormal

  • Rotations

4. FACTORIZATION

  • Matrix Decomposition

  • LU Decomposition

  • QR Decomposition

  • Cholesky Decomposition

  • Eigen Decomposition

  • Eigen Values

  • Eigen Vector

  • Singular Value Decomposition

  • Principal Component Analysis

Calculus Roadmap

1. CALCULUS BASICS

  • Functions

  • Derivatives

  • Maxima Minima

  • Product and Chain Rule Differentiation

  • Composite functions

  • Partial Derivatives

  • Higher-order derivatives

  • Integrals

  • Limits

  • Infinite series summation

2. OPTIMIZERS

  • Gradient Descents

  • Optimizers

  • Loss Functions

  • Taylor’s Series

  • Constrained Optimization (Lagrange Multiplier)

  • Newton’s method in Optimization

  • Convex Optimization

Free YouTube resources:

Credits to 3Blue1Brown, Khan Academy, StatQuest with Josh Starmer.

Last updated

Was this helpful?