🖍️
gitbook_docs
  • Introduction
  • Machine Learning
    • Recommended Courses
      • For Undergrad Research
      • Math for Machine Learning
    • ML Notes
      • Covariance Correlation
      • Feature Selection
      • Linear Regression
      • Entropy, Cross-Entropy, KL Divergence
      • Bayesian Classifier
        • Terminology Review
        • Bayesian Classifier for Normally Distributed classes
      • Linear Discriminant Analysis
      • Logistic Regression
        • Logistic Regression Math
      • Logistic Regression-MaximumLikelihood
      • SVM
        • SVM concept
        • SVM math
      • Cross Validation
      • Parameter, Density Estimation
        • MAP, MLE
        • Gaussian Mixture Model
      • E-M
      • Density Estimation(non-parametric)
      • Unsupervised Learning
      • Clustering
      • kNN
      • WaveletTransform
      • Decision Tree
    • Probability and Statistics for Machine Learning
      • Introduction
      • Basics of Data Analysis
      • Probability for Discrete Random Variable
      • Poisson Distribution
      • Chi-Square Distribution
      • P-value and Statistical Hypothesis
      • Power and Sample Size
      • Hypothesis Test Old
      • Hypothesis Test
      • Multi Armed Bandit
      • Bayesian Inference
      • Bayesian Updating with Continuous Priors
      • Discrete Distribution
      • Comparison of Bayesian and frequentist inference
      • Confidence Intervals for Normal Data
      • Frequenist Methods
      • Null Hypothesis Significance Testing
      • Confidence Intervals: Three Views
      • Confidence Intervals for the Mean of Non-normal Data
      • Probabilistic Prediction
  • Industrial AI
    • PHM Dataset
    • BearingFault_Journal
      • Support Vector Machine based
      • Autoregressive(AR) model based
      • Envelope Extraction based
      • Wavelet Decomposition based
      • Prediction of RUL with Deep Convolution Nueral Network
      • Prediction of RUL with Information Entropy
      • Feature Model and Feature Selection
    • TempCore Journal
      • Machine learning of mechanical properties of steels
      • Online prediction of mechanical properties of hot rolled steel plate using machine learning
      • Prediction and Analysis of Tensile Properties of Austenitic Stainless Steel Using Artificial Neural
      • Tempcore, new process for the production of high quality reinforcing
      • TEMPCORE, the most convenient process to produce low cost high strength rebars from 8 to 75 mm
      • Experimental investigation and simulation of structure and tensile properties of Tempcore treated re
    • Notes
  • LiDAR
    • Processing of Point Cloud
    • Intro. 3D Object Detection
    • PointNet
    • PointNet++
    • Frustrum-PointNet
    • VoxelNet
    • Point RCNN
    • PointPillars
    • LaserNet
  • Simulator
    • Simulator List
    • CARLA
    • Airsim
      • Setup
      • Tutorial
        • T#1
        • T#2
        • T#3: Opencv CPP
        • T#4: Opencv Py
        • Untitled
        • T#5: End2End Driving
  • Resources
    • Useful Resources
    • Github
    • Jekyll
  • Reinforcement Learning
    • RL Overview
      • RL Bootcamp
      • MIT Deep RL
    • Textbook
    • Basics
    • Continuous Space RL
  • Unsupervised Learning
    • Introduction
  • Unclassified
    • Ethics
    • Conference Guideline
  • FPGA
    • Untitled
  • Numerical Method
    • NM API reference
Powered by GitBook
On this page

Was this helpful?

  1. Machine Learning
  2. Probability and Statistics for Machine Learning

Frequenist Methods

PreviousConfidence Intervals for Normal DataNextNull Hypothesis Significance Testing

Last updated 3 years ago

Was this helpful?

Frequentist school of statistics

Introduction

  • 베이지안 통계 다음으로 등장한 통계학파

  • 20세기에 지배적인 학파였음

  • confidence intervals, p-values, t-test, x^2-test가 이에 해당됨

  • 컴퓨터의 등장 이후로는 bayesian method가 가장 보편적인 방법이 됨

The fork in the road

  • Bayesian inference: 지금까지 공부했던 방법

    • H가 hypothesis, D가 data

    • prior를 확실히 안다면 정확하게 작동함: 그러나 실제로 완벽한 prior는 없음

      -> Bayesian은 prior, Frequentist는 likelyhood func.을 사용함

What is probability?

  • Frequentist

    • 고정 값을 가진 파라미터의 확률 분포를 무의미하다고 생각함, 가설에 대한 신뢰도를 정량화하기 위해 확률 사용을 거부함

      • ex) 동전을 던졌을 때 앞면이 나올 확률 1/2 -> 동전을 던지는 횟수가 무한대로 갈수록 1/2에 가까워짐

    • 가설이 주어진 데이터에 확률 분포(랜덤, 반복 가능, 실험적)를 적용함

  • Bayesian

    • 고정된 파라미터에 대해 불완전한 지식을 설명하기 위해 확률을 사용함

    • 모든 것(가설, 데이터)에 확률 분포를 적용함


Null Hypothesis Significance Testing 1

Introduction

  • Neyman-Pearson 패러다임을 주로 사용함

    • ex) 동전을 10번 던졌을 때 앞면이 나오는 횟수

Types of error

Composite hypothesis

ex) 동전을 던졌을 때 나올 수 있는 앞면의 개수의 평균

Null distribution:

High and low power test

  • both standard normal

  • High power: 높은 검정력

  • Low power: 낮은 검정력

Designing a hypothesis test

  • Pick the null hypothesis H0.

  • Decide if HA is one-sided or two-sided

  • Pick the test statistic.

    • ex) z-test, t-test, x^2-test

  • Pick a significance level and determine the rejection region

    • ex) 0.1, 0.05, 0.001

  • Determine the power

Critical values

ex) critical value = 0.05

p-values

  • reject region의 면적

ex) IQ의 normal distribution = N(100, 15^2)

9명의 학생들의 평균 IQ가 112일 때 신뢰수준 0.05로 H0을 reject할 수 있는가?

reject H0

+예시

Null_hypothesis