🖍️
gitbook_docs
  • Introduction
  • Machine Learning
    • Recommended Courses
      • For Undergrad Research
      • Math for Machine Learning
    • ML Notes
      • Covariance Correlation
      • Feature Selection
      • Linear Regression
      • Entropy, Cross-Entropy, KL Divergence
      • Bayesian Classifier
        • Terminology Review
        • Bayesian Classifier for Normally Distributed classes
      • Linear Discriminant Analysis
      • Logistic Regression
        • Logistic Regression Math
      • Logistic Regression-MaximumLikelihood
      • SVM
        • SVM concept
        • SVM math
      • Cross Validation
      • Parameter, Density Estimation
        • MAP, MLE
        • Gaussian Mixture Model
      • E-M
      • Density Estimation(non-parametric)
      • Unsupervised Learning
      • Clustering
      • kNN
      • WaveletTransform
      • Decision Tree
    • Probability and Statistics for Machine Learning
      • Introduction
      • Basics of Data Analysis
      • Probability for Discrete Random Variable
      • Poisson Distribution
      • Chi-Square Distribution
      • P-value and Statistical Hypothesis
      • Power and Sample Size
      • Hypothesis Test Old
      • Hypothesis Test
      • Multi Armed Bandit
      • Bayesian Inference
      • Bayesian Updating with Continuous Priors
      • Discrete Distribution
      • Comparison of Bayesian and frequentist inference
      • Confidence Intervals for Normal Data
      • Frequenist Methods
      • Null Hypothesis Significance Testing
      • Confidence Intervals: Three Views
      • Confidence Intervals for the Mean of Non-normal Data
      • Probabilistic Prediction
  • Industrial AI
    • PHM Dataset
    • BearingFault_Journal
      • Support Vector Machine based
      • Autoregressive(AR) model based
      • Envelope Extraction based
      • Wavelet Decomposition based
      • Prediction of RUL with Deep Convolution Nueral Network
      • Prediction of RUL with Information Entropy
      • Feature Model and Feature Selection
    • TempCore Journal
      • Machine learning of mechanical properties of steels
      • Online prediction of mechanical properties of hot rolled steel plate using machine learning
      • Prediction and Analysis of Tensile Properties of Austenitic Stainless Steel Using Artificial Neural
      • Tempcore, new process for the production of high quality reinforcing
      • TEMPCORE, the most convenient process to produce low cost high strength rebars from 8 to 75 mm
      • Experimental investigation and simulation of structure and tensile properties of Tempcore treated re
    • Notes
  • LiDAR
    • Processing of Point Cloud
    • Intro. 3D Object Detection
    • PointNet
    • PointNet++
    • Frustrum-PointNet
    • VoxelNet
    • Point RCNN
    • PointPillars
    • LaserNet
  • Simulator
    • Simulator List
    • CARLA
    • Airsim
      • Setup
      • Tutorial
        • T#1
        • T#2
        • T#3: Opencv CPP
        • T#4: Opencv Py
        • Untitled
        • T#5: End2End Driving
  • Resources
    • Useful Resources
    • Github
    • Jekyll
  • Reinforcement Learning
    • RL Overview
      • RL Bootcamp
      • MIT Deep RL
    • Textbook
    • Basics
    • Continuous Space RL
  • Unsupervised Learning
    • Introduction
  • Unclassified
    • Ethics
    • Conference Guideline
  • FPGA
    • Untitled
  • Numerical Method
    • NM API reference
Powered by GitBook
On this page
  • Probability
  • Brief review of Probability Theory
  • Discrete Distribution
  • Continuous Distribution
  • Joint Probability Distribution
  • Information Theory
  • Statistical Hypothesis Test
  • Bayesian Inference and Statistics
  • Regression
  • Linear Regression
  • Logistic Regression
  • Statistical ML
  • Unsupervised ML

Was this helpful?

  1. Machine Learning
  2. Probability and Statistics for Machine Learning

Introduction

Probability

Brief review of Probability Theory

Discrete Random Variable

Bayes rule

Independence and Conditional Independence

Continuous Random Variable

Mean, Variance, Quantiles

Discrete Distribution

Binomial and Bernoulli Distribution

Poisson Distribution

Continuous Distribution

Gaussian(Normal) Distribution

Student t distribution

Chi-Square Distribution

Gamma Distribution

Beta Distribution

Joint Probability Distribution

Covariance and Correlation

Information Theory

Entropy: JE

KL divergence: JE

Statistical Hypothesis Test

Statistical and P-value

Student t-test

Chi-Square Test

Multiple Testing

ANOVA

Multi-Armed Bandit

Bayesian Inference and Statistics

Bayesian Inference Concept

Discrete Prior: Done

Updating Probabilistic prediction: YJ

Continuous Prior: JH

Bayesian Classifier

Bayesian Statistics

MAP

Regression

Linear Regression

MLE

Bayesian Linear Regression

Logistic Regression

Bayesian Logic Regression

Statistical ML

Bootstrap

Boosting

Bagging and Random Forest

K-NN

Unsupervised ML

K-Means

PCA

PreviousProbability and Statistics for Machine LearningNextBasics of Data Analysis

Last updated 3 years ago

Was this helpful?