Prediction of RUL with Information Entropy

๋ฒ ์–ด๋ง ์ž”์กด ์ˆ˜๋ช… ์˜ˆ์ธก์„ ์œ„ํ•œ ์ฃผํŒŒ์ˆ˜ ์—๋„ˆ์ง€ ๊ธฐ๋ฐ˜ ํŠน์ง•์‹ ํ˜ธ ์ถ”์ถœ

2017, ๊น€์„๊ตฌ, ์ตœ์ฃผํ˜ธ, ์•ˆ๋‹ค์šด, ํ•œ๊ตญ ITS ํ•™ํšŒ ๋…ผ๋ฌธ์ง€

Introduction

  • PHM์˜ ๋‹จ๊ณ„: Signal Processing, Diagnostics, Prognostics

  • Prognostics

    • ์‹ ํ˜ธ ์ฒ˜๋ฆฌ์™€ ๊ณ ์žฅ ์ง„๋‹จ์€ ์—ฐ๊ตฌ๊ฐ€ ๋งŽ์ด ์ง„ํ–‰๋œ ๋ถ„์•ผ์ง€๋งŒ ๊ณ ์žฅ ์˜ˆ์ง€ ๋ถ„์•ผ๋Š” ๊ทธ๋ ‡์ง€ ์•Š์Œ

    • ์ผ๋ฐ˜์ ์œผ๋กœ ์ง„๋™ ์‹ ํ˜ธ๋ฅผ ๋ถ„์„ํ•จ

    • ํŠน์ง•์‹ ํ˜ธ

      • ์‹œ๊ฐ„ ์˜์—ญ

        • RMS

        • Kurtosis

      • ์ฃผํŒŒ์ˆ˜ ์˜์—ญ

        • Spectral kurtosis

        • envelope ์ ์šฉ ํ›„์˜ ๊ฒฐํ•จ์ฃผํŒŒ์ˆ˜ ์ง„ํญ

    • ํŠน์ง• ์‹ ํ˜ธ์˜ ๋‹จ์ 

      • signal de-noising์„ ๊ฑฐ์นœ ํ›„์—๋„ fluctuation์ด ์กด์žฌ

      • ์‹œ๊ฐ„์ด ์ง€๋‚˜๋ฉด์„œ monotonicity๊ฐ€ ์‚ฌ๋ผ์ง

      • ๊ณ ์žฅ์— ์ž„๋ฐ•ํ•ด์•ผ ๋ณ€ํ™”๋ฅผ ๋ณด์ž„

  • ๊ทน๋ณต ๋ฐฉ์•ˆ

    • ํŠน์ • ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์˜ ์ง„ํญ๊ฐ’์ด ๋ฒ ์–ด๋ง์˜ ์—ดํ™”๊ฐ€ ์ง„ํ–‰๋จ์— ๋”ฐ๋ผ ๋ถˆํ™•์‹ค์„ฑ์ด ์ค„์–ด๋“ฆ: ์ •๋ณด ์—”ํŠธ๋กœํ”ผ๋ฅผ ์ด์šฉํ•ด ์ •๋Ÿ‰ํ™”

    • but ๊ณ„์‚ฐ ์‹œ๊ฐ„์ด ์˜ค๋ž˜๊ฑธ๋ฆผ

FEMTO ๋ฒ ์–ด๋ง ์‹œํ—˜ ๋ฐ์ดํ„ฐ

  • ๋ณธ ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉํ•œ ๋ฐ์ดํ„ฐ: FEMTO bearing data

  • ์ˆ˜์ง, ์ˆ˜ํ‰ ๋ฐฉํ–ฅ์˜ ๊ฐ€์†๋„๊ณ„ ์‚ฌ์šฉ

  • ์ˆ˜ํ‰ ๋ฐฉํ–ฅ์˜ radial load ์ธ๊ฐ€

  • ๊ฒฐํ•จ์˜ ์ข…๋ฅ˜๋Š” ๋ชจ๋ฆ„

  • ๋ฒ ์–ด๋ง๋งˆ๋‹ค ์—ดํ™” ํŒจํ„ด๋„ ๋‹ค๋ฅด๊ณ  ์ˆ˜๋ช…๋„ ํฌ๊ฒŒ ์ฐจ์ด๋‚จ

    โ€‹ -> ๋‹ค๋ฅธ ์—ดํ™” ํŒจํ„ด์„ ๋ณด์ด๋Š” ๋ฐ์ดํ„ฐ์—์„œ๋„ ๊ณตํ†ต์ ์œผ๋กœ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ํŠน์ง• ์‹ ํ˜ธ๊ฐ€ ํ•„์š”

๊ธฐ์กด ํŠน์ง• ์‹ ํ˜ธ

์‹œ๊ฐ„ ์˜์—ญ์˜ ํŠน์ง•์‹ ํ˜ธ

์‹ฌํ•œ ๋…ธ์ด์ฆˆ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— exponential smoothing์„ ์ด์šฉํ•ด de-noisingํ•จ, smoothing factor alpha๋Š” 0.9๋กœ ์ง€์ •

  • RMS

    RMS=1Nโˆ‘i=1Nxi2RMS = \sqrt {{1 \over N}\sum\limits_{i = 1}^N {x_i ^2 } }
    • ๊ฒฐํ•จ ์ดˆ๊ธฐ์—๋Š” ์ƒ์Šน์„ธ ํ™•์ธ ์–ด๋ ค์›€

    • ๊ฒฐํ•จ์ด ๋ง๊ธฐ์— ์ด๋ฅด๋Ÿฌ์•ผ ์ƒ์Šน์„ธ ํ™•์ธ ๊ฐ€๋Šฅ

  • Kurtosis

    Kurtosis=1Nโˆ‘i=1N(xiโˆ’xโ€พ)4ฯƒ4Kurtosis = {{{1 \over N}\sum\limits_{i = 1}^N {(x_i - \overline x )^4 } } \over {\sigma ^4 }}
  • ์ง„๋™ ์‹ ํ˜ธ์˜ ์ถฉ๊ฒฉํŒŒ์— ๋ฏผ๊ฐํ•ด ๊ฒฐํ•จ ์ดˆ๊ธฐ์— ์ƒ์Šน์„ธ

  • ๊ฒฐํ•จ์ด ์ผ์ • ์ˆ˜์ค€ ์ง„ํ–‰๋˜๋ฉด ๋‹ค์‹œ ๊ฐ์†Œ์„ธ

โ€‹ #5: ๊ฒฐํ•จ์ด ๋ง๊ธฐ์— ์ด๋ฅด๋Ÿฌ์„œ์•ผ ์ƒ์Šน

Moving average spectral kurtosis

  • Spectral kurtosis

    • ํ•˜๋‚˜์˜ ์‹ ํ˜ธ์— ๋Œ€ํ•ด ์„œ๋กœ ๋‹ค๋ฅธ ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์—์„œ ๊ณ„์‚ฐํ•œ kurtosis ๊ฐ’

    • ๋ฒ ์–ด๋ง ๊ณ ์žฅ๊ณผ ๊ด€๋ จ๋œ ํŠน์ • ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์—์„œ ์ถ”์ถœํ•œ ์‹ ํ˜ธ๋งŒ์„ ์ด์šฉํ•ด kurtosis๋ฅผ ๊ณ„์‚ฐํ•˜๋ฉด ์ •ํ™•๋„๊ฐ€ ๋” ๋†’์Œ

    • ์‹œ๊ฐ„์— ๋Œ€ํ•ด์„œ ๊ฐ€์žฅ ์ข‹์€ monotonicity ์ฆ๊ฐ€ ๊ฒฝํ–ฅ์„ ๋ณด์ธ freq. band์˜ kurtosis ๊ฐ’์„ ํŠน์ง• ์‹ ํ˜ธ๋กœ ์‚ฌ์šฉ

    • window size: 100 data point

    • Spearman's correlation ์‚ฌ์šฉ: monotonicity ์ฆ๊ฐ€ ๊ฒฝํ–ฅ์„ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•œ ์ฒ™๋„, ์ด๊ฑธ ๊ธฐ์ค€์œผ๋กœ freq. band ์„ ์ •

      Spearmanโ€ฒsโ€‰correlation=cov(rgx,rgy)ฯƒrgxฯƒrgySpearman's\,correlation = {{{\mathop{\rm cov}} (rg_x ,rg_y )} \over {\sigma _{rg_x } \sigma _{rg_y } }}
  • monotonicity๊ฐ€ ๊ฐ€์žฅ ๋†’์€ freq. band๋กœ sk๋ฅผ ๊ณ„์‚ฐํ–ˆ๋Š”๋ฐ๋„ ์ฆ๊ฐ€ ์ดํ›„ ๊ฐ์†Œํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์ž„

์ฃผํŒŒ์ˆ˜ ์—๋„ˆ์ง€์— ๊ธฐ๋ฐ˜ํ•œ ํŠน์ง•์‹ ํ˜ธ ์ถ”์ถœ๋ฐฉ๋ฒ•

๋ณผ ๋ฒ ์–ด๋ง ๊ณ ์žฅ ๋‹จ๊ณ„

  • ์ผ๋ฐ˜์ ์œผ๋กœ 4๋‹จ๊ณ„๋กœ ๊ตฌ์„ฑ๋จ

  • 1๋‹จ๊ณ„: ๊ณ ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์—์„œ ๊ฒฐํ•จ ํŠน์ง•์ด ๋‚˜ํƒ€๋‚จ, ๊ทธ๋Ÿฌ๋‚˜ ์ด ์˜์—ญ์—์„œ๋Š” ๋ฌผ๋ฆฌ์ ์ธ ๊ฒ€์‚ฌ๋ฅผ ํ†ตํ•ด ๋ฒ ์–ด๋ง์˜ ๊ณ ์žฅ์„ ์‹๋ณ„ํ•  ์ˆ˜ ์—†์Œ

  • 2~๋‹จ๊ณ„: ๋ฒ ์–ด๋ง ์‹œ์Šคํ…œ์˜ ๊ณ ์œ ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์—์„œ ์‹ ํ˜ธ๊ฐ€ ๋‚˜ํƒ€๋‚จ, ์ ์ฐจ ๋ฒ ์–ด๋ง ๊ณ ์žฅ ์ฃผํŒŒ์ˆ˜์˜ harmonic freq.๋“ค์ด ์ƒคํ”„ํŠธ ์ฃผํŒŒ์ˆ˜์— ์˜ํ•ด ๋ณ€์กฐ๋˜์–ด ๋‚˜ํƒ€๋‚จ

  • 4๋‹จ๊ณ„: ๋งŽ์€ ๋ณ€์กฐ ์ฃผํŒŒ์ˆ˜ ์„ฑ๋ถ„๋“ค๊ณผ ์กฐํ™” ์ฃผํŒŒ์ˆ˜๋“ค์ด ๋ฐœ์ƒ, ๋ฒ ์–ด๋ง ๋‚ด๋ถ€์˜ ํ‹ˆ์ƒˆ๊ฐ€ ์ƒ๊ฒจ ๊ณ ์žฅ ์ฃผํŒŒ์ˆ˜ ์„ฑ๋ถ„๋“ค์˜ ํฌ๊ธฐ๊ฐ€ ์ค„์–ด๋“ฆ

์ฃผํŒŒ์ˆ˜ ์—๋„ˆ์ง€

  • ๋ฒ ์–ด๋ง ๊ฒฐํ•จ์€ ํŠน์ • ์ฃผํŒŒ์ˆ˜๋กœ์˜ ์—๋„ˆ์ง€ ์ง‘์ค‘์„ ๊ฐ€์ ธ์˜ด

  • normalized energy ๊ณ„์‚ฐ: ์ŠคํŽ™ํŠธ๋Ÿผ ์ƒ์˜ ์—๋„ˆ์ง€ ์ด๋™์„ ํšจ๊ณผ์ ์œผ๋กœ ๊ฐ์ง€ํ•˜๊ธฐ ์œ„ํ•จ

    Ef=Af/โˆ‘F>0AF2E_f = A_f /\sum\limits_{F > 0} {A_F ^2 }
    • ์ŠคํŽ™ํŠธ๋Ÿผ ์ƒ์˜ ์—๋„ˆ์ง€ ์ดํ•ฉ์€ ํ•ญ์ƒ 1

    • ํŠน์ • ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ์—์„œ ์—๋„ˆ์ง€ ์†์‹ค๊ณผ ์ฆ๊ฐ€๋ฅผ ์‰ฝ๊ฒŒ ํ™•์ธ ๊ฐ€๋Šฅ

  • ์‹œ๊ฐ„์ด ์ง€๋‚˜๋ฉด์„œ 1000Hz ์ฃผ๋ณ€ ์—๋„ˆ์ง€๋Š” ์ƒ์Šน, 2000Hz ์ฃผ๋ณ€ ์—๋„ˆ์ง€๋Š” ๊ฐ์†Œ

    • ๋‘˜ ๋‹ค ๊ณ ์žฅ์— ๊ฐ€๊นŒ์›Œ์ง€๊ณ  ๋‚˜์„œ์•ผ ๋ณ€ํ™”ํ•จ -> ์ดˆ๊ธฐ์— ํฐ ์—๋„ˆ์ง€๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ์ฃผํŒŒ์ˆ˜ ์˜์—ญ๋งŒ ์„ ์ •

    • Spearman's correlation์„ ์‚ฌ์šฉํ•ด monotonicity ๊ณ„์‚ฐ

    • ์‹œ๊ฐ„์ด ์ง€๋‚ ์ˆ˜๋ก ํŠน์ • ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์œผ๋กœ ์Œ์˜ Spearman's correlation์ด ์ˆ˜๋ ดํ•จ

      • An et al.์€ ๋ชจ๋“  ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์—์„œ ์ฒ˜์Œ๋ถ€ํ„ฐ ๋ cycle๊นŒ์ง€ ๊ณ„์‚ฐํ•œ ํ›„ ๊ฐ€์žฅ ํฌ๊ฒŒ ๊ฐ์†Œํ•œ ์ƒ์œ„ 25๊ฐœ ์‚ฌ์šฉ

      • An et al. ๋ฐฉ๋ฒ•์€ ์—ฐ์‚ฐ๋Ÿ‰์ด ๋งŽ์ง€๋งŒ ์ด ๋ฐฉ๋ฒ•์€ spearman's correlation์„ ํ†ตํ•ด ์—๋„ˆ์ง€ ์†์‹ค์ด ๋ฐœ์ƒํ•˜๋Š” ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ์„ ์ฐพ์„ ์ˆ˜ ์žˆ์Œ

ํŠน์ง• ์‹ ํ˜ธ ์ถ”์ถœ

  • ์ •๋ณด ์—”ํŠธ๋กœํ”ผ

    H(X)=โˆ’โˆ‘i=1np(xi)logโก2p(xi)H(X) = - \sum\limits_{i = 1}^n {p(x_i )\log _2 p(x_i )}
    • X๋Š” ์ •๋ณด, n์€ X์—์„œ ๋„์ถœ๋  ์ˆ˜ ์žˆ๋Š” ์ถœ๋ ฅ์˜ ์ˆ˜, p(x_i)๋Š” ๊ฐ ์ถœ๋ ฅ ๊ฐ’๋“ค์˜ ๋ฐœ์ƒ ํ™•๋ฅ 

    • ์ฃผ์–ด์ง„ ์ •๋ณด๋ฅผ 0๊ณผ 1 ์‚ฌ์ด ๊ฐ’์œผ๋กœ normalize ์‹œํ‚ค๊ณ  0๊ณผ 1 ์‚ฌ์ด๋ฅผ 256๊ฐœ๋กœ ์ƒ˜ํ”Œ๋งํ•จ

    • ex) entropy ์ฆ๊ฐ€์™€ ๊ฐ์†Œ

  • ์—๋„ˆ์ง€ ์—”ํŠธ๋กœํ”ผ ์ถ”์ถœ

    • ์•ž์—์„œ ์ฐพ์€ ํŠน์ • ์ฃผํŒŒ์ˆ˜(์—๋„ˆ์ง€๊ฐ€ ๋†’์€ ์ฃผํŒŒ์ˆ˜)์—์„œ ์ •๋ณด ์—”ํŠธ๋กœํ”ผ ๊ณ„์‚ฐ

    • ๋‹จ์กฐ๋กœ์šด ๊ฐ์†Œ ๊ฒฝํ–ฅ, ๊ณ ์žฅ ์ง์ „์—์„œ ๊ธ‰๊ฒฉํ•œ ๋ณ€ํ™”x

  • ์ฃผํŒŒ์ˆ˜ ์ˆ˜๋ ด๋„

    • ์‹ ์†ํ•˜๊ฒŒ ํŠน์ • ์ฃผํŒŒ์ˆ˜๋กœ์˜ ์ˆ˜๋ ด์„ ๋ฐœ๊ฒฌํ•  ์ˆ˜ ์žˆ์œผ๋ฉด ์ดˆ๊ธฐ์— ๊ณ ์žฅ์„ ์˜ˆ์ธก ๊ฐ€๋Šฅํ•จ

    • ๊ธฐ์กด๋ฐฉ๋ฒ•๊ณผ ์—๋„ˆ์ง€ ์—”ํŠธ๋กœํ”ผ ๋ฐฉ๋ฒ•์˜ ์ˆ˜๋ ด ์†๋„ ๋น„๊ต

๊ธฐ์กด ํŠน์ง• ์‹ ํ˜ธ๋“ค๊ณผ์˜ ๋น„๊ต ๋ถ„์„

  • Monotonicity ๋‹จ์กฐ์„ฑ: ๊ณ ์žฅ ์˜ˆ์ธก์— ์ ํ•ฉํ•œ ํŠน์ง• ์‹ ํ˜ธ๋กœ ์‚ฌ์šฉ๋˜๊ธฐ ์œ„ํ•ด ๊ฐ€์žฅ ์ค‘์š”ํ•œ ์š”์†Œ ์ค‘ ํ•˜๋‚˜

    • Spearman's correlation: monotonicity ๊ฒฝํ–ฅ์„ ๋‚˜ํƒ€๋‚ด๋Š” ์ผ๋ฐ˜์ ์ธ ์ง€ํ‘œ

    • ๊ธฐ์กด์— ์‚ฌ์šฉํ•œ ํŠน์ง• ์‹ ํ˜ธ๋“ค๊ณผ์˜ monotonicity ๋น„๊ต

      ![](../images/entropy/spearman's_correlation.png)

      • RMS์™€ Kurtosis๋Š” ๋‚ฎ์€ ๊ฐ’, MASK๋Š” ๊ทธ๋ณด๋‹ค ๋‚˜์€ ๊ฒฝํ–ฅ

      • ๊ทธ๋Ÿฌ๋‚˜ MASK๋Š” ๋–จ๋ฆผ ํ˜„์ƒ ์กด์žฌ

Bearing Prognostics Method Based on Entropy Decrease at Specific Frequency

2016, Dawn An, Nam Ho Kim, AIAA SciTech

Introduction

  • ํ•ญ๊ณต๊ธฐ ์—”์ง„ ๊ณ ์žฅ์˜ 80~90%๊ฐ€ ๋ฒ ์–ด๋ง ๊ณ ์žฅ

  • FEMTO data

    • ๋นจ๊ฐ„ ์„ : ๊ณ ์žฅ threshold

    • ํŒŒ๋ž€ ์„ : ๊ณ ์žฅ์— ์ด๋ฅด๊ธฐ๊นŒ์ง€ ์ง„๋™ ์‹ ํ˜ธ

    • test 1, 2 ๋‘˜ ๋‹ค ๊ฐ™์€ ์‚ฌ์šฉ ์กฐ๊ฑด, ๊ฐ™์€ ๋ฒ ์–ด๋ง

      • test 1: radial F = 4kN, 1800 rpm

      • test 2: radial F = 4.2kN, 1650 rpm

    • ๊ทธ๋Ÿฌ๋‚˜ test 1์˜ ์ˆ˜๋ช…์€ ์•ฝ 2800 ์‚ฌ์ดํด, test 2๋Š” 870 ์‚ฌ์ดํด

    • 10์ดˆ๋งˆ๋‹ค 0.1์ดˆ ๋™์•ˆ์˜ 25.6kHz ์ง„๋™ ์‹ ํ˜ธ -> 1 cycle๋กœ ์„ค์ •(1 ์‚ฌ์ดํด๋งˆ๋‹ค 2560๊ฐœ์˜ ์ƒ˜ํ”Œ)

  • ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ฃผํŒŒ์ˆ˜ ๋„๋ฉ”์ธ์—์„œ์˜ ์—”ํŠธ๋กœํ”ผ ๋ณ€ํ™”๋ฅผ ์‚ฌ์šฉํ•œ degradation feature๋ฅผ ์ถ”์ถœํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆ

    • ์‹ ํ˜ธ๋ฅผ ๋ถ„ํ•ดํ•˜๊ณ  ์‚ฌ์ดํด์— ๋”ฐ๋ผ ๋ณ€ํ™”ํ•˜๋Š” ์‹ ํ˜ธ ์„ฑ๋ถ„์„ ์„ ํƒํ•ด ๋ถ„์„

Degradation Feature Extraction

Information Entropy for Degradation Feature Extraction

  • ์—”ํŠธ๋กœํ”ผ: ์‹œ์Šคํ…œ์˜ ๋ฌด์ž‘์œ„์„ฑ์˜ ์ฒ™๋„

    • ์‹œ์Šคํ…œ์ด ๋‹ค๋ฅธ ์‹œ์Šคํ…œ์œผ๋กœ๋ถ€ํ„ฐ ์—๋„ˆ์ง€๋ฅผ ํก์ˆ˜ํ•˜๋ฉด ์—”ํŠธ๋กœํ”ผ๊ฐ€ ์ฆ๊ฐ€

    • isolated system์˜ ์ „์ฒด ์—”ํŠธ๋กœํ”ผ๋Š” ๊ฐ์†Œํ•˜์ง€ ์•Š์Œ

  • ์ •๋ณด ์—”ํŠธ๋กœํ”ผ(= Shannon entropy)

    • ์ •๋ณด๋Ÿ‰์˜ ํ‰๊ท ์„ ๋‚˜ํƒ€๋ƒ„

    • ์ •๋ณด ์—”ํŠธ๋กœํ”ผ์˜ ์ฆ๊ฐ€๋Š” ๋ฐ์ดํ„ฐ์— ํฌํ•จ๋œ ์ •๋ณด๊ฐ€ ๋ˆ„๋ฝ๋˜์–ด ๋ถˆํ™•์‹ค์„ฑ์ด ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒƒ์„ ์˜๋ฏธ

Information entropy

H(X)=โˆ’โˆ‘i=1np(xi)logโก2p(xi)H\left( X \right) = - \sum\limits_{i = 1}^n {p\left( {x_i } \right)\log _2 p\left( {x_i } \right)}

where X = information source (bins of acceleration data)

n = number of possible outcomes from X

p(x_i) = probability of each outcome

  • ๊ฐ€์†๋„ ๋ฐ์ดํ„ฐ๋ฅผ 0~1 ์‚ฌ์ด๋กœ normalize์‹œํ‚ค๊ณ  255๊ฐœ์˜ ๊ฐ„๊ฒฉ(bins)๋กœ ๋‚˜๋ˆ”

  • n: ๋ฐ์ดํ„ฐ๊ฐ€ ๋“ค์–ด์žˆ๋Š” bin์˜ ์ˆ˜

  • p(x_i): bin์— ๋“ค์–ด์žˆ๋Š” ๋ฐ์ดํ„ฐ์˜ ์ˆ˜ / ์ „์ฒด ๋ฐ์ดํ„ฐ์˜ ์ˆ˜

  • ๊ธฐ๋ณธ์ ์œผ๋กœ pmf์™€ ๊ฐ™์€ ์›๋ฆฌ

  • bin์˜ ๊ฐœ์ˆ˜๊ฐ€ ๋งŽ์•„์งˆ์ˆ˜๋ก ์—”ํŠธ๋กœํ”ผ๊ฐ€ ์ฆ๊ฐ€

Entropy as a degradation feature

  • ๋Œ€๋ถ€๋ถ„์˜ raw data๋Š” ๊ณ ์žฅ ์ง์ „๊นŒ์ง€ ํฐ ๋ณ€ํ™”๋ฅผ ๋ณด์ด์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์œผ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ์—ฌ๋Ÿฌ ํ…Œ์ŠคํŠธ์— ๋Œ€ํ•ด ๋™์ผํ•œ ํŠน์„ฑ์„ ๋‚˜ํƒ€๋‚ด๋Š” ํŠน์ • ์ฃผํŒŒ์ˆ˜๋ฅผ ์„ ํƒํ•จ

    • ์ผ๋ถ€ ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์—์„œ๋Š” ์‚ฌ์ดํด์— ๋”ฐ๋ผ ์ง„ํญ์ด ์ฆ๊ฐ€ํ•˜๊ฑฐ๋‚˜ ๊ฐ์†Œํ•จ

  • ๋ชจ๋“  ๋ฐ์ดํ„ฐ ์…‹ ์กฐ์‚ฌ ๊ฒฐ๊ณผ ์—”ํŠธ๋กœํ”ผ์˜ ๊ฐ์†Œ ์ถ”์„ธ๋Š” ์ผ๊ด€๋˜๊ณ  ๋ช‡ ๊ฐ€์ง€ ์ค‘์š”ํ•œ ํŠน์„ฑ์ด ์žˆ์œผ๋‚˜ ์—”ํŠธ๋กœํ”ผ ์ฆ๊ฐ€๋Š” ๊ทธ๋ ‡์ง€ ์•Š์Œ, ์—”ํŠธ๋กœํ”ผ๊ฐ€ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒฝ์šฐ์—๋Š” ๋™์ž‘์„ ์˜ˆ์ธกํ•  ์ˆ˜ ์—†์Œ

-> ์—”ํŠธ๋กœํ”ผ ๊ฐ์†Œ๋ฅผ degradation feature๋กœ ์‚ฌ์šฉํ•  ๊ฒƒ์ด๋‹ค

Procedure of Degradation Feature Extraction

  1. fft

  2. ์ฃผํŒŒ์ˆ˜๋ณ„๋กœ ํ”Œ๋กœํŒ…ํ•จ: ํŠน์ • ์ฃผํŒŒ์ˆ˜๋ฅผ ๊ณ ์ •์‹œํ‚ค๊ณ  cycle์— ๋”ฐ๋ฅธ amplitude์˜ ๋ณ€ํ™”๋ฅผ ํ”Œ๋กœํŒ…ํ•จ

  3. ์—”ํŠธ๋กœํ”ผ๊ฐ€ ๊ฐ์†Œํ•˜๋Š” ํŠน์ • ์ฃผํŒŒ์ˆ˜๋ฅผ ์„ ํƒ

Result of Feature Extraction and Its Atrributes

  • ๊ฐ ๊ณก์„ ์€ ์„ ํƒํ•œ ์ฃผํŒŒ์ˆ˜์—์„œ ๊ณ„์‚ฐ๋œ ๊ฐ ์ฃผ๊ธฐ์—์„œ 25๊ฐœ์˜ ์—”ํ”„๋กœํ”ผ์˜ ๊ฐ’์˜ ์ค‘์•™๊ฐ’์ž„

  • maximum / minimum entropy, EOL์˜ ์ •์˜

  • ๊ฒฐ๊ณผ

    • EOL์€ ์ตœ๋Œ€ ์—”ํŠธ๋กœํ”ผ์— ๋น„๋ก€ํ•จ

      • ์ดˆ๊ธฐ์— ๋” ๋†’์€ ์—๋„ˆ์ง€๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ์—๋„ˆ์ง€๊ฐ€ ๋” ๊ธด ์ˆ˜๋ช…๊ณผ ๊ด€๋ จ์ด ์žˆ์„ ์ˆ˜ ์žˆ์Œ

      • ์ตœ๋Œ€ ์—”ํŠธ๋กœํ”ผ์™€ EOL ๊ฐ„์˜ ์„ ํ˜• ๊ด€๊ณ„๋ฅผ ์ด์šฉํ•ด ํ•™์Šต์‹œ์ผœ RUL์„ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ

    • degradation rate์˜ ์ •์˜

      • ์ˆ˜์‹

        dr=1โˆ’minโก.Entropymaxโก.Entropydr = 1 - {{\min .Entropy} \over {\max .Entropy}}
      • ๋‘ ๊ฐ€์ง€ ๊ทธ๋ฃน: threshold 20% / 40%

Prognosis

  • true EOL์˜ 90%๋ฅผ EOL๋กœ ์„ค์ •(์œ ์ง€๋ณด์ˆ˜๋ฅผ ์œ„ํ•ด)

  • ์—”ํŠธ๋กœํ”ผ๊ฐ€ ์ˆ˜๋ ดํ•œ ์ดํ›„(๋นจ๊ฐ„ ์„ )์— ์˜ˆ์ธก ๊ฐ€๋Šฅ

  • ์˜ˆ์ธก ๋ฐฉ๋ฒ•

    • ์ตœ๋Œ€ ์—”ํŠธ๋กœํ”ผ์™€ EOL์˜ ์„ ํ˜• ๊ด€๊ณ„๋ฅผ ์ด์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•

    • ์—”ํŠธ๋กœํ”ผ์˜ threshold๋ฅผ ์ด์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•

Max E-EOL Method: The Relation between Maximum Entropy and EOL

  • ex) 700 ์‚ฌ์ดํด์ผ ๋•Œ max. entropy๊ฐ€ 4๋ฉด EOL์€ 1000, RUL์€ 300

E.trend Method: Entropy Trend with Threshold

Entropy=ฮฒ1expโก(ฮฒCycleฮฒ3)Entropy = \beta _1 \exp \left( {\beta Cycle^{\beta _3 } } \right)
  • non-linear regression

    • maximum entropy์™€ cycles ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•ด์„œ ๋ฒ ํƒ€ 1, 2, 3์„ ์ถ”์ •

  • 6 ๊ฐœ์˜ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ๋‘ ๊ทธ๋ฃน์œผ๋กœ ๋ถ„๋ฅ˜ํ•˜๊ณ  ๊ฐ ๊ทธ๋ฃน์˜ ํ‰๊ท ๊ฐ’์„ threshold๋กœ ์„ค์ •

    • 21%, 41%

    • figure 11 linear regression์„ ์ฐธ๊ณ ํ•˜๋ฉด ํ˜„์žฌ ๋ฐ์ดํ„ฐ๊ฐ€ ์–ด๋А ๊ทธ๋ฃน์— ์†ํ•˜๋Š”์ง€ ์•Œ ์ˆ˜ ์žˆ์Œ

  • threshold์™€ entropy curve์˜ ๊ต์ ์œผ๋กœ EOL์„ ์˜ˆ์ธก

    • figure 12์—์„œ๋Š” threshold๋ฅผ 21%๋กœ ์„ค์ •ํ•˜๋ฉด RUL์ด -9์ž„ -> ๋ง์ด ์•ˆ ๋จ, ๊ทธ๋ž˜์„œ 41%์˜ Threshold๋ฅผ ์‚ฌ์šฉํ•ด์•ผํ•จ(?)

RUL Prediction Results

  • Max E-EOL ๋ฐฉ๋ฒ•์€ Condition 1์—์„œ๋Š” true RUL์— ๋” ๊ฐ€๊น์ง€๋งŒ Condition 2์—์„œ๋Š” RUL์ด ๋‚ฎ์Œ

    • Condition 2์—์„œ EOL์ด ์งง๊ณ  maximum entropy๋„ ๋‚ฎ๊ธฐ ๋•Œ๋ฌธ

  • ์„ ์ •๋œ ์ฃผํŒŒ์ˆ˜์—์„œ ์—”ํŠธ๋กœํ”ผ๊ฐ€ ์ˆ˜๋ ดํ•œ ํ›„(์ดˆ๋ก์ƒ‰ ์ˆ˜์ง์„ ) RUL์„ ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ๊ฐ„์ฃผํ•จ

    • ๊ทธ๋Ÿฌ๋‚˜ ์ผ๋ถ€ ๊ฒฝ์šฐ์—๋Š” RUL์ด ์Œ์ˆ˜๊ฐ€ ๋˜์—ˆ๋‹ค๊ฐ€ ์–‘์ˆ˜๊ฐ€ ๋˜๊ธฐ๋„ ํ•จ

      • RUL์ด 50 ๋ฏธ๋งŒ์ผ ๋•Œ ์œ ์ง€๋ณด์ˆ˜๋ฅผ ์ฃผ๋ฌธํ•œ๋‹ค๊ณ  ๊ฐ€์ •ํ•จ

FEMTO Experiment

PRONOSTIA: An Experimental Platform for Bearings Accelerated Degradation Tests

The PRONOSTIA Platform

  • ๋ช‡ ์‹œ๊ฐ„๋งŒ์— ๋ฒ ์–ด๋ง degradation์„ ์ง„ํ–‰์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ์‹คํ—˜ ์žฅ์น˜

  • rotating part, degradation part, measurement part ์„ธ ๋ถ€๋ถ„์œผ๋กœ ๋‚˜๋‰จ

Rotating Part

  • asynchronous motor with a gearbox + 2 shafts

    • ๋ชจํ„ฐ

      • 250W

      • ๊ธฐ์–ด๋ฐ•์Šค๋ฅผ ํ†ตํ•ด์„œ ์ •๊ฒฉ์†๋„์ธ 2830 rpm์œผ๋กœ ํšŒ์ „, ์ •๊ฒฉ ํ† ํฌ ์ „๋‹ฌ

      • secondary shaft์— 2000 rpm ์ดํ•˜๋กœ ์ „๋‹ฌํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋งŒ๋“ฆ

    • shaft

      • first shaft: ๋ชจํ„ฐ์— ๊ฐ€๊นŒ์ด ์„ค์น˜

      • second shaft: incremental encoder์˜ ์˜ค๋ฅธ์ชฝ์— ์„ค์น˜

    • gearbox: 2๊ฐœ์˜ ํ’€๋ฆฌ + ํƒ€์ด๋ฐ ๋ฒจํŠธ๋กœ ์ด๋ฃจ์–ด์ ธ ์žˆ์Œ

  • two clamping

    • ๊ธธ์ด ๋ฐฉํ–ฅ์˜ ์›€์ง์ž„์„ ๋ง‰์Œ

  • human machine interface

    • set the speed

    • select the direction of the motor's rotation

    • display the monitoring parameter

      • motor's instantaneous temperature

  • whole driving chain of motor

    • human interface machine

    • frequency converter

Generation of the radial force

  • radial force๊ฐ€ ๋ฒ ์–ด๋ง์˜ ์ˆ˜๋ช…์„ ์ค„์ž„

    • ๋ ˆ๊ทค๋ ˆ์ดํ„ฐ๋ฅผ ์ œ์™ธํ•˜๊ณ  ๋ชจ๋“  ๋ถ€ํ’ˆ์ด ์•Œ๋ฃจ๋ฏธ๋Š„ ํŒ์— ๊ทธ๋ฃนํ™”(?)๋˜์–ด ์žˆ์Œ

    • ๋ฒ ์–ด๋ง์˜ ์ตœ๋Œ€ ๋™์  ํ•˜์ค‘์ธ 4000N๊นŒ์ง€ radial load๋ฅผ ๊ฐ€ํ•จ

    • ์œ ์•• ์žญ์œผ๋กœ ๊ตฌ์„ฑ๋œ ์•ก์ถ”์—์ดํ„ฐ ์‚ฌ์šฉ

    • ๋ฒ ์–ด๋ง์— ๊ฐ„์ ‘์ ์œผ๋กœ ํž˜ ์ „๋‹ฌ: rotating lever arm์œผ๋กœ ํž˜์„ ์ฆํญ์‹œํ‚ค๊ณ  ํด๋žจํ•‘ ๋ง์„ ํ†ตํ•ด ๋ฒ ์–ด๋ง์œผ๋กœ ์ „๋‹ฌ

Measurements part

  • ์˜จ๋„์™€ ์ง„๋™ ๋‘ ๊ฐ€์ง€์˜ degradation ํŠน์„ฑ์œผ๋กœ ๋‚˜๋‰จ

  • ๊ฐ€์†๋„๊ณ„

    • ์ˆ˜ํ‰, ์ˆ˜์ง 1๊ฐœ์”ฉ

    • radialํ•˜๊ฒŒ ๋ฐฐ์น˜

    • 25.6kHz๋กœ ์ƒ˜ํ”Œ๋ง

  • ์˜จ๋„ ์„ผ์„œ

    • ๋ฒ ์–ด๋ง์˜ ๋ง์— ๊ฐ€๊นŒ์šด ๊ตฌ๋ฉ ์•ˆ์— ์œ„์น˜

    • 10Hz๋กœ ์ƒ˜ํ”Œ๋ง

Experiment result

Degradation patterns

The ideal degradation

Sudden degradations

Last updated