๐Ÿ–๏ธ
gitbook_docs
  • Introduction
  • Machine Learning
    • Recommended Courses
      • For Undergrad Research
      • Math for Machine Learning
    • ML Notes
      • Covariance Correlation
      • Feature Selection
      • Linear Regression
      • Entropy, Cross-Entropy, KL Divergence
      • Bayesian Classifier
        • Terminology Review
        • Bayesian Classifier for Normally Distributed classes
      • Linear Discriminant Analysis
      • Logistic Regression
        • Logistic Regression Math
      • Logistic Regression-MaximumLikelihood
      • SVM
        • SVM concept
        • SVM math
      • Cross Validation
      • Parameter, Density Estimation
        • MAP, MLE
        • Gaussian Mixture Model
      • E-M
      • Density Estimation(non-parametric)
      • Unsupervised Learning
      • Clustering
      • kNN
      • WaveletTransform
      • Decision Tree
    • Probability and Statistics for Machine Learning
      • Introduction
      • Basics of Data Analysis
      • Probability for Discrete Random Variable
      • Poisson Distribution
      • Chi-Square Distribution
      • P-value and Statistical Hypothesis
      • Power and Sample Size
      • Hypothesis Test Old
      • Hypothesis Test
      • Multi Armed Bandit
      • Bayesian Inference
      • Bayesian Updating with Continuous Priors
      • Discrete Distribution
      • Comparison of Bayesian and frequentist inference
      • Confidence Intervals for Normal Data
      • Frequenist Methods
      • Null Hypothesis Significance Testing
      • Confidence Intervals: Three Views
      • Confidence Intervals for the Mean of Non-normal Data
      • Probabilistic Prediction
  • Industrial AI
    • PHM Dataset
    • BearingFault_Journal
      • Support Vector Machine based
      • Autoregressive(AR) model based
      • Envelope Extraction based
      • Wavelet Decomposition based
      • Prediction of RUL with Deep Convolution Nueral Network
      • Prediction of RUL with Information Entropy
      • Feature Model and Feature Selection
    • TempCore Journal
      • Machine learning of mechanical properties of steels
      • Online prediction of mechanical properties of hot rolled steel plate using machine learning
      • Prediction and Analysis of Tensile Properties of Austenitic Stainless Steel Using Artificial Neural
      • Tempcore, new process for the production of high quality reinforcing
      • TEMPCORE, the most convenient process to produce low cost high strength rebars from 8 to 75 mm
      • Experimental investigation and simulation of structure and tensile properties of Tempcore treated re
    • Notes
  • LiDAR
    • Processing of Point Cloud
    • Intro. 3D Object Detection
    • PointNet
    • PointNet++
    • Frustrum-PointNet
    • VoxelNet
    • Point RCNN
    • PointPillars
    • LaserNet
  • Simulator
    • Simulator List
    • CARLA
    • Airsim
      • Setup
      • Tutorial
        • T#1
        • T#2
        • T#3: Opencv CPP
        • T#4: Opencv Py
        • Untitled
        • T#5: End2End Driving
  • Resources
    • Useful Resources
    • Github
    • Jekyll
  • Reinforcement Learning
    • RL Overview
      • RL Bootcamp
      • MIT Deep RL
    • Textbook
    • Basics
    • Continuous Space RL
  • Unsupervised Learning
    • Introduction
  • Unclassified
    • Ethics
    • Conference Guideline
  • FPGA
    • Untitled
  • Numerical Method
    • NM API reference
Powered by GitBook
On this page
  • Theory
  • p-value๋ž€? (probability value)
  • Statistical Hypothesis

Was this helpful?

  1. Machine Learning
  2. Probability and Statistics for Machine Learning

P-value and Statistical Hypothesis

PreviousChi-Square DistributionNextPower and Sample Size

Last updated 3 years ago

Was this helpful?

Theory

p-value๋ž€? (probability value)

  • ๋žœ๋ค ๋ชจ๋ธ์ด ์ฃผ์–ด์กŒ์„๋•Œ, ๊ทธ ๊ฒฐ๊ณผ๊ฐ€ ๊ด€์ฐฐ๋œ ๊ฒฐ๊ณผ๋ณด๋‹ค ๋” ๊ทน๋‹จ์ ์ผ ํ™•๋ฅ .

  • p ๊ฐ’์ด 0.05 (ฮฑ, ์œ ์˜์ˆ˜์ค€) ๋ณด๋‹ค ์ž‘๋‹ค๋Š” ๊ฒƒ์€ ์–ด๋–ค ์‚ฌ๊ฑด์ด ์šฐ์—ฐํžˆ ๋ฐœ์ƒํ•  ํ™•๋ฅ ์ด 5%๋ณด๋‹ค ์ž‘๋‹ค๋Š” ์˜๋ฏธ์ž„.

  • ์šฐ์—ฐํžˆ ๋ฐœ์ƒํ•  ํ™•๋ฅ ์ด 5% ์ดํ•˜๋ผ๋Š” ๊ฒƒ์€ **"๋ฐ˜๋“œ์‹œ ์ผ์–ด๋‚  ์ด์œ  (์ธ๊ณผ๊ด€๊ณ„)"**๊ฐ€ ์žˆ๋‹ค๊ณ  ์ถ”์ •ํ•˜๋Š” ๊ฒƒ.

Statistical Hypothesis

  • H0 (null hypothesis): ์‚ฌ๊ฑด์ด ์šฐ์—ฐํžˆ ์ผ์–ด๋‚ฌ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๋Š” ๊ฒƒ

  • H1 (alternative hypothesis): ์‚ฌ๊ฑด์— ์ธ๊ณผ๊ด€๊ณ„๊ฐ€ ์žˆ๋‹ค๋ผ๊ณ  ๊ฐ€์ •ํ•˜๋Š” ๊ฒƒ

  • 1์ข… ์˜ค๋ฅ˜: ์–ด๋–ค ํšจ๊ณผ๊ฐ€ ์šฐ์—ฐํžˆ ๋ฐœ์ƒํ•œ ๊ฒƒ์ธ๋ฐ, ๊ทธ๊ฒƒ์ด ์‚ฌ์‹ค์ด๋ผ๊ณ  ์ž˜๋ชป ํŒ๋‹จํ•˜๋Š” ๊ฒฝ์šฐ

    • ์œ ์˜์ˆ˜์ค€์„ 5%๋กœ ์„ค์ •ํ•˜๋Š” ๊ฒƒ์€, 1์ข… ์˜ค๋ฅ˜์˜ ์ˆ˜์ค€์„ 5%๋กœ ์ œ์•ฝํ•œ๋‹ค๋Š” ์˜๋ฏธ์ž„

  • 2์ข… ์˜ค๋ฅ˜: ์–ด๋–ค ํšจ๊ณผ๊ฐ€ ์‹ค์ œ๋กœ ์žˆ๋Š” ๊ฒƒ์ธ๋ฐ, ๊ทธ๊ฒƒ์ด ์šฐ์—ฐํžˆ ๋ฐœ์ƒํ–ˆ๋‹ค๊ณ  ์ž˜๋ชป ํŒ๋‹จํ•˜๋Š” ๊ฒฝ์šฐ

Type I & Type II Errors.